|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use de.jstacs.classifier.scoringFunctionBased.logPrior | |
---|---|
de.jstacs.classifier.scoringFunctionBased.cll | Provides the implementation of the log conditional likelihood as an OptimizableFunction and a classifier that uses log conditional likelihood or supervised posterior
to learn the parameters of a set of ScoringFunctions |
de.jstacs.classifier.scoringFunctionBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
Classes in de.jstacs.classifier.scoringFunctionBased.logPrior used by de.jstacs.classifier.scoringFunctionBased.cll | |
---|---|
LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
Classes in de.jstacs.classifier.scoringFunctionBased.logPrior used by de.jstacs.classifier.scoringFunctionBased.logPrior | |
---|---|
DoesNothingLogPrior
This class defines a LogPrior that does not penalize any parameter. |
|
LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
|
SeparateLogPrior
Abstract class for priors that penalize each parameter value independently and have some variance (and possible mean) as hyper-parameters. |
|
SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |