|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.parameters.ParameterSet
de.jstacs.classifier.assessment.ClassifierAssessmentAssessParameterSet
de.jstacs.classifier.assessment.RepeatedHoldOutAssessParameterSet
public class RepeatedHoldOutAssessParameterSet
This class implements a ClassifierAssessmentAssessParameterSet
that must be used
to call method assess()
of a RepatedHoldOutExperiment
.
It contains user-specific parameters necessary for a run of a RepeatedHoldOutExperiment
.
Nested Class Summary |
---|
Nested classes/interfaces inherited from class de.jstacs.parameters.ParameterSet |
---|
ParameterSet.ParameterList |
Field Summary |
---|
Fields inherited from class de.jstacs.parameters.ParameterSet |
---|
alternativeInstanceClass, errorMessage, parameters, parent, ranged |
Constructor Summary | |
---|---|
|
RepeatedHoldOutAssessParameterSet()
inherited from ClassifierAssessmentAssessParameterSet |
protected |
RepeatedHoldOutAssessParameterSet(Class alternativeInstanceClass)
inherited from ClassifierAssessmentAssessParameterSet |
|
RepeatedHoldOutAssessParameterSet(Sample.PartitionMethod dataSplitMethod,
int elementLength,
boolean exceptionIfMPNotComputable,
int repeats,
double[] percents)
|
|
RepeatedHoldOutAssessParameterSet(StringBuffer representation)
inherited from ClassifierAssessmentAssessParameterSet |
Method Summary | |
---|---|
Collection<Result> |
getAnnotation()
|
Sample.PartitionMethod |
getDataSplitMethod()
|
String |
getInstanceComment()
Returns a comment (a textual description) of the class that can be constructed using this ParameterSet . |
String |
getInstanceName()
Returns the name of an instance of the class that can be constructed using this ParameterSet . |
double[] |
getPercents()
|
int |
getRepeats()
|
protected void |
initializeMyParametersArrayList()
Initializes the list of Parameter s in this ParameterSet . |
protected void |
loadParameters()
Loads the parameters for this ParameterSet . |
Methods inherited from class de.jstacs.classifier.assessment.ClassifierAssessmentAssessParameterSet |
---|
getAllClassifierAssessmentAssessParameterSets, getElementLength, getExceptionIfMPNotComputable |
Methods inherited from class de.jstacs.parameters.ParameterSet |
---|
clone, fromXML, getErrorMessage, getId, getInstance, getInstanceClass, getNumberOfParameters, getNumberOfValues, getParameterAt, getParent, hasDefaultOrIsSet, initParameterList, initParameterList, isAtomic, isRanged, makeRanged, next, parametersLoaded, propagateId, recieveId, replaceParametersWithRangedInstance, reset, resetToFirst, setAlternativeInstanceClass, setParent, simplify, toXML, valuesToString |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
protected RepeatedHoldOutAssessParameterSet(Class alternativeInstanceClass)
ClassifierAssessmentAssessParameterSet
public RepeatedHoldOutAssessParameterSet() throws UnsupportedOperationException
ClassifierAssessmentAssessParameterSet
UnsupportedOperationException
public RepeatedHoldOutAssessParameterSet(StringBuffer representation) throws NonParsableException
ClassifierAssessmentAssessParameterSet
NonParsableException
public RepeatedHoldOutAssessParameterSet(Sample.PartitionMethod dataSplitMethod, int elementLength, boolean exceptionIfMPNotComputable, int repeats, double[] percents) throws SimpleParameter.IllegalValueException
dataSplitMethod
- defines the method used to split user-supplied data into
k
mutually exclusive, random-splits
(available options are: Sample.PartitionMethod.PARTITION_BY_NUMBER_OF_ELEMENTS
and Sample.PartitionMethod.PARTITION_BY_NUMBER_OF_SYMBOLS
) See docu of Sample
for further details.elementLength
- defines the length of elements (sequences) the classifiers
to be assessed are able to classifyexceptionIfMPNotComputable
- a RepeatedHoldOutParameterSet
is used
in combination with an MeasureParameters
-object
to call assess
-methods of RepeatedHoldOutExperiment
s.
If exceptionIfMPNotComputable=true
then an expection is thrown
in case of a selected measure-parameters that could not be computed.repeats
- the number of repeates of each iteration
(mutually exclusive, randomly split data to obtain
test- and train-data-sets,
train classifiers using train-data-sets
and test them using test-data-sets)
of that RepeatedHoldOutExperiment
this
RepatedHoldOutAssessParameterSet
is used withpercents
- this array containes class-wise the percentage of the user-supplied data
that should be used as test-data in each iteration
of that RepeatedHoldOutExperiment
this
RepatedHoldOutAssessParameterSet
is used with
SimpleParameter.IllegalValueException
- is thrown in case of out-of-range or invalid given parametersMethod Detail |
---|
protected void initializeMyParametersArrayList()
ClassifierAssessmentAssessParameterSet
Parameter
s in this ParameterSet
.
initializeMyParametersArrayList
in class ClassifierAssessmentAssessParameterSet
protected void loadParameters() throws Exception
ParameterSet
ParameterSet
. This is in
most cases done by simply creating a new ArrayList<Parameter>
for the
field parameters/code>
and filling it with instances of subclasses of Parameter
- Overrides:
loadParameters
in class ClassifierAssessmentAssessParameterSet
- Throws:
Exception
- an Exception
is thrown if the parameters could not be loaded- See Also:
ParameterSet.parameters
,
Parameter
public String getInstanceName()
ParameterSet
ParameterSet
.
getInstanceName
in class ClassifierAssessmentAssessParameterSet
public String getInstanceComment()
ParameterSet
ParameterSet
.
getInstanceComment
in class ClassifierAssessmentAssessParameterSet
public int getRepeats()
RepatedHoldOutAssessParameterSet
(repeats defines how many iterations (train and test classifiers)
of that RepeatedHoldOutExperiment
this RepeatedHoldOutAssessParameterSet
is used with are performed)public double[] getPercents()
public Sample.PartitionMethod getDataSplitMethod()
Sample.PartitionMethod
defining how the mutually exclusive, random-splits
of user-supplied data are generated. See class Sample
for further details.public Collection<Result> getAnnotation()
getAnnotation
in class ClassifierAssessmentAssessParameterSet
ClassifierAssessmentAssessParameterSet
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |