|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Function | |
---|---|
de.jstacs.algorithms.optimization | Provides classes for different types of algorithms that are not directly linked to the modelling components of Jstacs: Algorithms on graphs, algorithms for numerical optimization, and a basic alignment algorithm. |
de.jstacs.classifier.scoringFunctionBased | Provides the classes for Classifier s that are based on ScoringFunction s. |
de.jstacs.classifier.scoringFunctionBased.cll | Provides the implementation of the log conditional likelihood as an OptimizableFunction and a classifier that uses log conditional likelihood or supervised posterior
to learn the parameters of a set of ScoringFunctions |
de.jstacs.classifier.scoringFunctionBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
Uses of Function in de.jstacs.algorithms.optimization |
---|
Classes in de.jstacs.algorithms.optimization that implement Function | |
---|---|
class |
DifferentiableFunction
This class is the framework for any (at least) one time differentiable function f: R^n -> R. |
class |
NegativeDifferentiableFunction
The Function -f for a given function f. |
class |
NegativeFunction
The Function -f for a given function f. |
class |
NegativeOneDimensionalFunction
This class extends the class OneDimensionalFunction. |
class |
NumericalDifferentiableFunction
This class is the framework for any function f: R^n -> R. |
class |
OneDimensionalFunction
This class implements the interface function for an one dimensional function. |
class |
OneDimensionalSubFunction
This class used to do the line search. |
class |
QuadraticFunction
This class implements a quadratic function. |
Constructors in de.jstacs.algorithms.optimization with parameters of type Function | |
---|---|
NegativeFunction(Function f)
|
|
OneDimensionalSubFunction(Function f,
double[] current,
double[] d)
|
Uses of Function in de.jstacs.classifier.scoringFunctionBased |
---|
Classes in de.jstacs.classifier.scoringFunctionBased that implement Function | |
---|---|
class |
OptimizableFunction
This is the main function for the ScoreClassifier. |
Uses of Function in de.jstacs.classifier.scoringFunctionBased.cll |
---|
Classes in de.jstacs.classifier.scoringFunctionBased.cll that implement Function | |
---|---|
class |
NormConditionalLogLikelihood
This class implements the normalized log conditional likelihood. |
Uses of Function in de.jstacs.classifier.scoringFunctionBased.logPrior |
---|
Classes in de.jstacs.classifier.scoringFunctionBased.logPrior that implement Function | |
---|---|
class |
DoesNothingLogPrior
This class defines a LogPrior that does not penalize any parameter. |
class |
LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
class |
SeparateGaussianLogPrior
Class for a LogPrior that defines a Gaussian prior on the parameters of a set of NormalizableScoringFunction s and a set of class-parameters. |
class |
SeparateLaplaceLogPrior
Class for a LogPrior that defines a Laplace-prior on the parameters of a set of NormalizableScoringFunction s and a set of class-parameters. |
class |
SeparateLogPrior
Abstract class for priors that penalize each parameter value independently and have some variance (and possible mean) as hyper-parameters. |
class |
SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |