|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Model | |
---|---|
de.jstacs.classifier.assessment | This package allows to assess classifiers. |
de.jstacs.classifier.modelBased | Provides the classes for Classifier s that are based on Model s |
de.jstacs.models | Provides the interface Model and its abstract implementation AbstractModel , which is the super class of all other models. |
de.jstacs.models.discrete | |
de.jstacs.models.discrete.inhomogeneous | This package contains various inhomogeneous models. |
de.jstacs.models.discrete.inhomogeneous.shared | |
de.jstacs.models.mixture | This package is the super package for any mixture model. |
de.jstacs.models.mixture.gibbssampling | This package contains many classes that can be used while a Gibbs sampling. |
de.jstacs.models.utils |
Uses of Model in de.jstacs.classifier.assessment |
---|
Fields in de.jstacs.classifier.assessment declared as Model | |
---|---|
protected Model[][] |
ClassifierAssessment.myModel
This array contains for each class the internal used models. |
Constructors in de.jstacs.classifier.assessment with parameters of type Model | |
---|---|
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed
using the given AbstractModel s. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new ClassifierAssessment from an array of AbstractClassifier s and a two-dimensional array
of Model s, which are combined to additional classifiers. |
|
ClassifierAssessment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new ClassifierAssessment from a set of Model s. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed
using the given AbstractModel s by a KFoldCrossValidation . |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new KFoldCrossValidation from an array of AbstractClassifier s and a two-dimensional array
of Model s, which are combined to additional classifiers. |
|
KFoldCrossValidation(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new KFoldCrossValidation from a set of Model s. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed
using the given AbstractModel s by a RepeatedHoldOutExperiment . |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedHoldOutExperiment from an array of AbstractClassifier s and a two-dimensional array
of Model s, which are combined to additional classifiers. |
|
RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new RepeatedHoldOutExperiment from a set of Model s. |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed
using the given AbstractModel s by a RepeatedSubSamplingExperiment . |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedSubSamplingExperiment from an array of AbstractClassifier s and a two-dimensional array
of Model s, which are combined to additional classifiers. |
|
RepeatedSubSamplingExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new RepeatedSubSamplingExperiment from a set of Model s. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed
using the given AbstractModel s by a Sampled_RepeatedHoldOutExperiment . |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new Sampled_RepeatedHoldOutExperiment from an array of AbstractClassifier s and a two-dimensional array
of Model s, which are combined to additional classifiers. |
|
Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of Model s. |
Uses of Model in de.jstacs.classifier.modelBased |
---|
Fields in de.jstacs.classifier.modelBased declared as Model | |
---|---|
protected Model[] |
ModelBasedClassifier.models
The internal models. |
Methods in de.jstacs.classifier.modelBased that return Model | |
---|---|
Model |
ModelBasedClassifier.getModel(int classIndex)
Returns a clone of the model for a specified class. |
Methods in de.jstacs.classifier.modelBased with parameters of type Model | |
---|---|
static int |
ModelBasedClassifier.getPossibleLength(Model... models)
This method returns the possible length of a classifier that would use the given models. |
Constructors in de.jstacs.classifier.modelBased with parameters of type Model | |
---|---|
ModelBasedClassifier(boolean cloneModels,
Model... models)
This constructor creates a new instance with the given models and clones these if necessary. |
|
ModelBasedClassifier(Model... models)
The default constructor. |
Uses of Model in de.jstacs.models |
---|
Classes in de.jstacs.models that implement Model | |
---|---|
class |
AbstractModel
Abstract class for a model for pattern recognition. |
class |
CompositeModel
This class is for modelling sequences by modelling the different positions of the each sequence by different models. |
class |
UniformModel
This class represents an uniform model. |
Fields in de.jstacs.models declared as Model | |
---|---|
protected Model[] |
CompositeModel.models
The models for the components |
Methods in de.jstacs.models that return Model | |
---|---|
Model |
Model.clone()
Creates a clone (deep copy) of the current Model instance. |
Model[] |
CompositeModel.getModels()
Returns the a deep copy of the models. |
Constructors in de.jstacs.models with parameters of type Model | |
---|---|
CompositeModel(AlphabetContainer alphabets,
int[] assignment,
Model... models)
|
Uses of Model in de.jstacs.models.discrete |
---|
Classes in de.jstacs.models.discrete that implement Model | |
---|---|
class |
DiscreteGraphicalModel
This is the main class for all discrete graphical models (DGM) |
Uses of Model in de.jstacs.models.discrete.inhomogeneous |
---|
Classes in de.jstacs.models.discrete.inhomogeneous that implement Model | |
---|---|
class |
BayesianNetworkModel
The class implements a Bayesian network of fixed order. |
class |
DAGModel
The abstract class for directed acyclic graphical models. |
class |
FSDAGModel
This class can be used for any discrete fixed structure DAG model (FSDAGModel). |
class |
InhomogeneousDGM
This class is the main class for all inhomgeneous discrete graphical models (IDGM). |
Methods in de.jstacs.models.discrete.inhomogeneous with parameters of type Model | |
---|---|
static void |
FSDAGModel.train(Model[] models,
int[][] graph,
double[][] weights,
Sample... data)
Computes the models with structure graph |
Uses of Model in de.jstacs.models.discrete.inhomogeneous.shared |
---|
Classes in de.jstacs.models.discrete.inhomogeneous.shared that implement Model | |
---|---|
class |
SharedStructureMixture
This class handles a mixture of models with the same structure that are learned via EM. |
Uses of Model in de.jstacs.models.mixture |
---|
Classes in de.jstacs.models.mixture that implement Model | |
---|---|
class |
AbstractMixtureModel
This is the abstract class for all kinds of mixture models. |
class |
MixtureModel
Class for a mixture model of any Model s. |
class |
StrandModel
This model handles sequences that can either lie on the forward strand or on the backward strand. |
Fields in de.jstacs.models.mixture declared as Model | |
---|---|
protected Model[] |
AbstractMixtureModel.alternativeModel
The alternative models for the EM. |
protected Model[] |
AbstractMixtureModel.model
The model for the sequences. |
Methods in de.jstacs.models.mixture that return Model | |
---|---|
Model |
AbstractMixtureModel.getModel(int i)
Returns the a deep copy of the i-th model. |
Model[] |
AbstractMixtureModel.getModels()
Returns the a deep copy of the models. |
Constructors in de.jstacs.models.mixture with parameters of type Model | |
---|---|
AbstractMixtureModel(int length,
Model[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
double eps,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new AbstractMixtureModel. |
|
MixtureModel(int length,
Model[] models,
double[] weights,
int starts,
double alpha,
double eps,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
MixtureModel(int length,
Model[] models,
double[] weights,
int starts,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
|
MixtureModel(int length,
Model[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
double eps,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new MixtureModel. |
|
MixtureModel(int length,
Model[] models,
int starts,
double[] componentHyperParams,
double alpha,
double eps,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
MixtureModel(int length,
Model[] models,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandModel(Model model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
double eps,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new StrandModel. |
|
StrandModel(Model model,
int starts,
double[] componentHyperParams,
double alpha,
double eps,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
StrandModel(Model model,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandModel(Model model,
int starts,
double forwardStrandProb,
double alpha,
double eps,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
StrandModel(Model model,
int starts,
double forwardStrandProb,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
Uses of Model in de.jstacs.models.mixture.gibbssampling |
---|
Classes in de.jstacs.models.mixture.gibbssampling that implement Model | |
---|---|
class |
FSDAGModelForGibbsSampling
This is the class for a fixed structure directed acyclic graphical model that can be used in a Gibbs sampling. |
Uses of Model in de.jstacs.models.utils |
---|
Methods in de.jstacs.models.utils with parameters of type Model | |
---|---|
static Sample |
DiscreteInhomogenousSampleEmitter.emitSample(Model m,
int n)
This method emits a sample with n |
static double |
ModelTester.getKLDivergence(Model m1,
Model m2,
int length)
Returns the Kullback-Leibler-divergence D(p_m1||p_m2). |
static double |
ModelTester.getLogLikelihood(Model m,
Sample data)
Returns the loglikelihood of a sample data for a given
model m . |
static double |
ModelTester.getLogLikelihood(Model m,
Sample data,
double[] weights)
Returns the loglikelihood of a sample data for a given
model m . |
static double |
ModelTester.getMarginalDistribution(Model m,
int[] constraint)
This method computes the marginal distribution for any discrete model m and all sequences that fulfil the
constraint , if possible. |
static double |
ModelTester.getMaxOfDeviation(Model m1,
Model m2,
int length)
This method computes the maximum deviation between the probabilties for the all sequences of length for discrete models
m1 and m2 . |
static Sequence |
ModelTester.getMostProbableSequence(Model m,
int length)
Returns one most probable sequence for the discrete model m . |
static double |
ModelTester.getShannonEntropy(Model m,
int length)
This method computes the Shannon Entropy for any discrete model m and all sequences of length , if
possible. |
static double |
ModelTester.getShannonEntropyInBits(Model m,
int length)
This method computes the Shannon Entropy in bits for any discrete model m and all sequences of length , if
possible. |
static double |
ModelTester.getSumOfDeviation(Model m1,
Model m2,
int length)
This method computes the sum of deviations between the probabilties for the all sequences of length for discrete models
m1 and m2 . |
static double |
ModelTester.getSumOfDistribution(Model m,
int length)
This method computes the marginal distribution for any discrete model m and all sequences of length , if
possible. |
static double |
ModelTester.getSymKLDivergence(Model m1,
Model m2,
int length)
Returns the difference of the Kullback-Leibler-divergences, i.e. |
static double |
ModelTester.getValueOfAIC(Model m,
Sample s,
int k)
This method computes the value of Akaikes Information Criterion (AIC). |
static double |
ModelTester.getValueOfBIC(Model m,
Sample s,
int k)
This method computes the value of Bayesian Information Criterion (BIC). |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |