
1 Preface

Teile vom Jstacs-Paper?

2 Starter: Data handling

In Jstacs, data is organized at three levels:

• Alphabets for defining single symbols, and AlphabetContainers for defining aggregate alpha-
bets,

• Sequences for defining sequences of symbols over a given alphabet,

• DataSets for defining sets of sequences.

Sequences are implemented as an array of numerical values. In case of discrete sequences over
some symbolic alphabet, the symbols are mapped to contiguous discrete values starting at 0,
which can be mapped back to the original symbols using the alphabet. This mapping is also used
for the toString() method, e.g., for printing a sequence. The actual data type, i.e. byte, short, or
integer, used to represented the symbols is chosen internally depending on the size of the alphabet.
Alphabets, Sequences, and DataSets are immutable for reasons of security and data consistency.
That means, an instance of those classes cannot be modified once it has been created.

2.1 Alphabets

Since Jstacs is tailoured at sequence analysis in bioinformatics, the most prominent alphabet is
the DNAAlphabet, which is a singleton instance that can be accessed by:

DNAAlphabet dna = DNAAlphabet.SINGLETON;

For general discrete alphabets, i.e., any kind of categorical data, you can use a DiscreteAlphabet.
Such an alphabet can be constructed in case-sensitive and insensitive variants (first argument)
using a list of symbols. In this example, we create a case-sensitive alphabet with symbols ”W”,
”S”, ”w”, and ”x”:

DiscreteAlphabet discrete = new DiscreteAlphabet(false , "W", "S", "w", "

x");

If you rather want to define an alphabet over contiguous discrete numerical values, you can do
so by calling a constructor that takes the maximum and minimum value of the desired range,
and defines the alphabet as all integer values between minimum and maximum (inclusive). For
example, to create a discrete alphabet over the values from 3 to 10, you can call

DiscreteAlphabet numerical = new DiscreteAlphabet(3, 10);

Continuous alphabets are defined over all reals (minus infinity to infinity) by default (see first line
in the following example). However, if you want to define the continuous alphabet over a specific
interval, you can specify the maximum and the minimum value of that interval. In the example,
we define a continuous alphabet spanning all reals between 0 and 100:

ContinuousAlphabet continuousInf = new ContinuousAlphabet ();

ContinuousAlphabet continuousPos = new ContinuousAlphabet(0.0, 100.0);

1

Administrator
Highlight

Administrator
Highlight

http://www.jstacs.de/api/de/jstacs/data/alphabets/Alphabet.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/Alphabet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/DNAAlphabet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/DiscreteAlphabet.html

For the DNA alphabet, each symbols has a complementary counterpart. Since in some cases, a
similar complementarity can also be defined for symbols other than DNA-nucleotides (e.g., for RNA
sequences containing U instead of T), Jstacs allows to define generic complementable alphabets.
These allow for example the generation of reverse complementary sequences out of an existing
sequence. Here, we define a binary alphabet of symbols “A” and “B”, where “A” is the complement
of “B” and vice versa.

GenericComplementableDiscreteAlphabet complementable = new

GenericComplementableDiscreteAlphabet(true , new String []{"A","B"},

new int []{1 ,0});

The first parameter again defines if this alphabet is case-insensitive (which is the case), the second
parameter defines the symbols of the alphabet, and the third parameter specifies the index of the
complementary symbol. For instance, the symbol at position 1 (“B”) is set as the complement of
the symbol at position 0 (“A”) by setting the 0-th value of the integer array to 1.

After the definition of single alphabets, we switch to the creation of aggregate alphabets.
Almost everywhere in Jstacs, we use aggregate alphabets to maintain generalizability. Since the
aggregate alphabet containing only a DNAAlphabetis always the same, a singleton for such an
AlphabetContaineris pre-defined:

AlphabetContainer dnaContainer = DNAAlphabetContainer.SINGLETON;

We can explicitly define an AlphabetContainer using a simple continuous alphabet by calling:

AlphabetContainer contContainer = new AlphabetContainer(continuousInf);

Aggregate alphabets become interesting if we need different symbols at different positions of
a sequence, or even a mixture of discrete and continuous values. For example, we might want
to represent sequences that consist of a DNA-nucleotide at the first position, some other discrete
symbol at the second position, and a real number stemming from some measurement at the third
position. Using the DNAAlphabet, the discrete Alphabet, and the continuous Alphabet defined
above, we can define such an aggregate alphabet by calling

AlphabetContainer mixedContainer = new AlphabetContainer(dna , discrete ,

continuousPos);

To save memory, we can also re-use the same alphabet at different position of the aggregate
alphabet. If we want to use a DNAAlphabet at positions 0, 1, and 3, and a continuous alphabet
at positions 2, 4, and 5, we can use a constructor that takes the alphabets as the first argument
and the assignment to the positions as the second argument:

AlphabetContainer complex = new AlphabetContainer(new Alphabet []{dna ,

continuousInf}, new int[]{0,0,1,0,1,1});

The alphabets are assigned to specific positions by their index in the array of the first argument.

2.2 Sequences

Single sequences can be created from an AlphabetContainer and a string. However, in most cases,
we load the data from some file, which will be explained in the next sub-section. For creating
a DNA sequence, we use a DNAAlphabet like the one defined above and a string over the DNA
alphabet:

Sequence dnaSeq = Sequence.create(dnaContainer , "ACGTACGTACGT");

In a similar manner, we define a continuous sequence. In this case, a single value is represented
by more than one letter in the string. Hence, we need to define a delimiter between the values as
a third argument, which is a space in the example.

2

Administrator
Highlight

Administrator
Highlight

http://www.jstacs.de/api/de/jstacs/data/alphabets/DNAAlphabet.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/DNAAlphabet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/Alphabet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/Alphabet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/DNAAlphabet.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/DNAAlphabet.html

Sequence contSeq = Sequence.create(contContainer , "0.5 1.32642 99.5 20.4

 5 7.7" , " ");

We can also create sequences over the mixed alphabet defined above. In the example, the single
values are delimited by a “;”.

Sequence mixedSeq = Sequence.create(mixedContainer , "C;x;5.67" , ";");

For very large amounts of data or very long sequences, even the representation of symbols by
byte values can be too memory-consuming. Hence, Jstacs also offers a representation of DNA
sequences in a sparse encoding as bits of long values. You can create such a SparseSequence from
a DNAAlphabet and a string:

Sequence sparse = new SparseSequence(dnaContainer , "ACGTACGTACGT");

However, the reduced memory footprint comes at the expense of a slightly increased runtime for
accessing symbols of a SparseSequence. Hence, it is not the default representation in Jstacs.

After we learned how to create sequences, we now want to work with them. First of all, you
can obtain the length of a sequence from its getLength() method:

int length = dnaSeq.getLength ();

Since on the abstract level of Sequence we do not distinguish between discrete and continuous
sequences (and we also may have mixed sequences), there are two alternative methods to obtain
one element of a sequence regardless of its content. With the first method, we can obtain the
discrete value at a certain position (2 in the example):

int value = dnaSeq.discreteVal(2);

If the Sequence contains a continuous value at this position, it is discretized by default by returning
the distance to the minimum value of the continuous alphabet at this position casted to an integer.
If the Sequence contains a discrete value, that value is just returned in the encoding according to
the AlphabetContainer. In a similar manner, we can obtain the continuous value at a position (5
in the example)

double value2 = contSeq.continuousVal(5);

where discrete values are just casted to doubles.
We can obtain a sub-sequence of a Sequence using the method getSubSequence(int,int), where

the first parameter is the start position within the sequence, counting from 0, and the second
parameter is the length of the extracted sub-sequence. So the following line of code would extract
a sub-sequence of length 3 starting at position 2 of the original sequence or, stated differently, we
skip the first two elements, extract the following three elements, and again skip everything after
position 4.

Sequence contSub = contSeq.getSubSequence(2, 3);

Since Sequences in Jstacs are immutable, this method returns a new instance of Sequence, which
is assigned to a variable contSub in the example. Hence, in cases where you need the same sub-
sequences frequently in your code, for example in a ZOOPS-model or other models using sliding
windows on a Sequence, we recommend to precompute these sub-sequences and store them in some
auxiliary data structure in order to invest runtime in computations rather than garbage collection.
Internally, sub-sequences only hold a reference on the original sequences and the start position and
length within that sequence to keep the memory overhead of sub-sequences at a low level.

For Sequences defined over a ComplementableDiscreteAlphabet like the DNAAlphabet, we can
also obtain the (reverse) complement of a sequence. For example, to create the reverse comple-
mentary sequence of a complete sequence, we call

3

http://www.jstacs.de/api/de/jstacs/data/alphabets/SparseSequence.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/DNAAlphabet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/SparseSequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/ComplementableDiscreteAlphabet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/DNAAlphabet.html

Sequence revComp = dnaSeq.reverseComplement ();

For the complement of a sub-sequence of length 6 starting at position 3 of the original sequence,
we use

Sequence subComp = dnaSeq.complement(3, 6);

For some analyses, for instance permutation tests or for estimating false-positive rates of predic-
tions, it is useful to create permuted variants of an original sequence. To this end, Jstacs provides
a class PermutedSequence that creates a randomly permuted variant using the constructor

PermutedSequence permuted = new PermutedSequence(dnaSeq);

or a user-defined permutation by an alternative constructor. In the randomized variant, the posi-
tions of the original sequence are permuted independently of each other, which means that higher
order properties of the sequence like di-nucleotide content are not preserved. If you want to cre-
ate sequences with similar higher-order properties, have a look at the emitSample() method of
HomogeneousModel.

Often, we want to add additional annotations to a sequence, for instance the occurrences of
some binding motif, start and end positions of introns, or just the species a sequence is stemming
from. To this end, Jstacs provides a number of SequenceAnnotations that can be added to a
Sequence (or read from a FastA-file as we will see later). For instance, we can add the annotation
for binding site of a motif called “new motif” of length 5 starting at position 3 of the forward
strand of sequence dnaSeq using the annotate method of that sequence:

Sequence annotatedDnaSeq = dnaSeq.annotate(true , new MotifAnnotation("

new motif", 3, 5, Strand.FORWARD));

Again, this method creates a new Sequence object due to Sequences being immutable. After we
added several SequenceAnnotations to a Sequence, we can obtain all those annotations by calling

SequenceAnnotation [] allAnnotations = annotatedDnaSeq.getAnnotation ();

For retrieving annotations of a specific type, we can use the method getSequenceAnnotationByType

MotifAnnotation motif = (MotifAnnotation) annotatedDnaSeq.

getSequenceAnnotationByType("Motif", 0);

to, for instance, obtain the first (index 0) annotation of type “Motif”.

2.3 DataSets

In most cases, we want to load Sequences from some FastA or plain text file instead of creating
Sequences manually from strings. In Jstacs, collections of Sequences are represented by DataSets.
The class DataSet (and DNADataSet) provide constructors that work on a file or the path to a
file, and parse the contents of the file to a DataSet, i.e. a collection of Sequences.

The most simple case is to create a DNADataSet from a FastA file. To do so, we call the
constructor of DNADataSetwith the (absolute or relative) path to the FastA file:

DNADataSet dnaSample = new DNADataSet("myfile.fa");

For other file formats and types of Sequences, DataSet provides another constructor that works
on the AlphabetContainerfor the data in the file, a StringExtractor that handles the extraction
of the strings representing single sequences and skipping comment lines, and a delimiter between
the elements of a sequence. Hence, the StringExtractor, a SparseStringExtractor in the example,
requires the specification of the path to the file and the symbol that indicates comment line. For
example, if we want to create a sample of continuous sequences stored in a tab-separated plain
text file “myfile.tab”, we use the AlphabetContainer with a continuous Alphabet from above, a
StringExtractor with a hash as the comment symbol, and a tab as the delimiter:

4

Administrator
Highlight

http://www.jstacs.de/api/de/jstacs/data/sequences/PermutedSequence.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/discrete/homogeneous/HomogeneousModel.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SequenceAnnotation.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SequenceAnnotation.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DNADataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DNADataSet.html
http://www.jstacs.de/api/de/jstacs/data/DNADataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/io/StringExtractor.html
http://www.jstacs.de/api/de/jstacs/io/StringExtractor.html
http://www.jstacs.de/api/de/jstacs/io/SparseStringExtractor.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/Alphabet.html
http://www.jstacs.de/api/de/jstacs/io/StringExtractor.html

DataSet contSample = new DataSet(contContainer , new

SparseStringExtractor("myfile.tab", ’#’), "\t");

The SparseStringExtractor is tailoured to files containing many sequences, and reads the file line
by line, where each line is converted to a Sequence and discarded before the next line is parsed.

Since SparseSequences are not one of the default representations of sequence in Jstacs (see
above), these are not created by the constructors of DataSet or DNADataSet. However, the class
SparseSequence provides a method getSample that takes the same arguments as the constructor of
DataSet, for example

DataSet sparseSample = SparseSequence.getDataSet(dnaContainer , new

SparseStringExtractor("myfile.fa", ’>’));

for reading DNA sequences from a FastA file, and returns a DataSet containing SparseSequences.
After we successfully created a DataSet, we want to access and use the Sequences within this

DataSet. We retrieve a Sequence of a DataSet using the method getElementAt(int). For instance,
we get the fifth Sequence of dnaSample by calling

Sequence fifth = dnaSample.getElementAt(5);

We can also request the number of Sequences in a DataSet by the method getNumberOfElements()

and use this information, for instance, to iterate over all Sequences. In the example, we just print
the retrieved Sequences to standard out

for(int i=0;i<dnaSample.getNumberOfElements ();i++){

System.out.println(dnaSample.getElementAt(i));

}

where the Sequences are printed in their original alphabet since their toString() method is over-
ridden accordingly.

As an alternative to the iteration by explicit calls to these methods, DataSet also implements the
Iterable interface, which facilitates the Java variant of foreach-loops as in the following example:

for(Sequence seq : contSample){

System.out.println(seq.getLength ());

}

Here, we just print the length of each Sequence in contSample to standard out.
We can also apply some of the sequence-level operations to all Sequences of a DataSet, and

obtain a new DataSet containing the modified sequences. For example, we get a DataSet containing
the sub-sequences of length 10 starting at position 3 of each sequence by calling

DataSet infix = dnaSample.getInfixDataSet(3, 10);

a DataSet of all suffixes starting at position 7 from

DataSet suffix = dnaSample.getSuffixDataSet(7);

or a DataSet containing all reverse complementary Sequences using

DataSet allRevComplements = dnaSample.getReverseComplementaryDataSet ();

For cross-validation experiments, hold-out samplings, or similar procedures, it is useful to
partition a sample randomly. DataSets in Jstacs support two types of partitionings. The first is to
partition a DataSet into k equally sized parts. What is “equally sized” can either be determined by
the number of sequences or by the number of symbols of all sequences in a sample. Both measures
are supported by Jstacs.

The second partitioning method creates partitions of a user-defined fraction of the original
sample. For example, we partition the DataSet dnaSample into five equally sized parts according
to the number of sequences in that DataSet by calling

5

Administrator
Note
references?

Administrator
Note
almost

Jens
Highlight

http://www.jstacs.de/api/de/jstacs/io/SparseStringExtractor.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/SparseSequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DNADataSet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/SparseSequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/alphabets/SparseSequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html

DataSet [] fiveParts = dnaSample.partition(5, PartitionMethod.

PARTITION_BY_NUMBER_OF_ELEMENTS);

and we partition the same sample into parts containing 10, 20, and 70 percent of the symbols of
the original DataSetby calling

DataSet [] randParts = dnaSample.partition(PartitionMethod.

PARTITION_BY_NUMBER_OF_SYMBOLS , 0.1, 0.2, 0.7);

In both cases, the Sequences in the DataSet are partitioned as atomic elements. That means, a
Sequence is not cut into several parts to obtain exactly equally sized parts, but the size of a part
may slightly (depending on the number of sequences and lengths of those sequences) differ from
the specified percentages.

To create a new DataSet that contains all sub-sequences of a user-defined length of the original
Sequences, we can use another constructor of DataSet. The sub-sequences are extracted in the
same manner as we would do by shifting a sliding window over each sequence, extracting the
sub-sequence under this window, and build a new DataSet of the extracted sub-sequences. For
instance, we obtain a DataSet with all sub-sequences of length 8 using

DataSet sliding = new DataSet(dnaSample , 8);

In the previous sub-section, we learned how to add SequenceAnnotations to a Sequence. Often,
we want to use the annotation that is already present in an input file, for example the comment
line of a FastA file. We can do so by specifying a SequenceAnnotationParser in the constructor of
the DataSet. The simplest type of SequenceAnnotationParser is the SimpleSequenceAnnotation-
Parser, which just extracts the complete comment line preceding a sequence.

DNADataSet dnaWithComments = new DNADataSet("myfile.fa", ’>’, new

SimpleSequenceAnnotationParser ());

Although the specification of the parser is quite simple, the extraction of the comment line as a
string is a bit lengthy. We first obtain the Sequence from the DataSet, get the annotation of that
sequence, obtain the first comment, called “result” in the hierarchy of Jstacs (you see in section 3,
why), and convert the corresponding result object to a string.

String comment = dnaWithComments.getElementAt(0).getAnnotation ()[0].

getResultAt(0).getValue ().toString ();

If your comment line is defined in a “key-value” format with some generic delimiter between
entries, you can Jstacs let parse the entries to distinct annotations. For instance, if the comment
line has some format key1=value1; key2=value2;..., we can parse that comment line using the
SplitSequenceAnnotationParser. This parser only requires the specification of the delimiter be-
tween key and value (“=“ in the example) and the delimiter between different entries (“;” in the
example). Like before, we instantiate a SplitSequenceAnnotationParser as the last argument of
the DNADataSet constructor:

DNADataSet dnaWithParsedComments = new DNADataSet("myfile.fa", ’>’, new

SplitSequenceAnnotationParser("=",";"));

We can now access all parsed annotations by the getAnnotation() method

SequenceAnnotation [] allAnnotations2 = dnaWithParsedComments.getElementAt

(0).getAnnotation ();

or, for instance, the getSequenceAnnotationByType introduced in the previous section, where the
type corresponds to the key in the comment line, and the identifier of the retrieved SequenceAn-
notation is identical to the value for that key in the comment line.

6

Jens
Highlight

http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SequenceAnnotation.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SequenceAnnotationParser.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SequenceAnnotationParser.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SimpleSequenceAnnotationParser.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SimpleSequenceAnnotationParser.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SplitSequenceAnnotationParser.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SplitSequenceAnnotationParser.html
http://www.jstacs.de/api/de/jstacs/data/DNADataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SequenceAnnotation.html
http://www.jstacs.de/api/de/jstacs/data/sequences/annotation/SequenceAnnotation.html

Jstacs only supports FastA and plain text files directly. However, you can access other formats
or even data bases like Genbank using an adaptor to BioJava.

For example, we can use BioJava to load two sequences from Genbank.

GenbankRichSequenceDB db = new GenbankRichSequenceDB ();

HashSet <String > idSet = new HashSet <String >(2);

idSet.add("NC_001284 .2");

idSet.add("NC_000932 .1");

RichSequenceDB subDB = db.getRichSequences(idSet);

RichSequenceIterator dbIterator = subDB.getRichSequenceIterator ();

As a result, we obtain a RichSequenceIterator, which implements the SequenceIterator interface of
BioJava. We can use a SequenceIterator in an adaptor method to obtain a Jstacs DataSet including
converted annotations:

DataSet fromBioJava = BioJavaAdapter.sequenceIteratorToDataSet(

dbIterator , null);

The second argument of the method allows for filtering for specific annotations using a BioJava
FeatureFilter.

Vice versa, we can convert a Jstacs DataSet to a BioJava SequenceIterator by an analogous
adaptor method:

SequenceIterator backFromJstacs = BioJavaAdapter.

dataSetToSequenceIterator(fromBioJava , true);

By means of these two methods, we can use all BioJava facilities for loading and storing data
from and to diverse file formats and loading data from data bases in our Jstacs applications.

3 Intermediate course: XMLParser, Parameters, and Re-
sults

In the early days of Jstacs, we stored models, classifiers, and other Jstacs objects using the standard
serialization of Java. However, this mechanism made it impossible to load objects of earlier versions
of a class and the files where not human-readable. Hence, we started to create a facility for storing
objects to XML representations. In the current version of Jstacs, this is accomplished by an
interface Storable for objects that can be converted to and from their XML representation, and
a class XMLParser that can handle such Storables, primitives, and arrays thereof. In the first
sub-section, we give examples how to use the XMLParser.

Another problem we wanted to handle has been the documentation of (external) parameters
of models, classifiers, or other classes. Although documentation exists in the Javadocs, these
are inaccessible from the code. Hence, we created classes for the documentation of parameters
and sets of parameters, namely the subclasses of Parameter and ParameterSet. A Parameter at
least provides the name of and a comment on the parameter that is described. In sub-classes,
other values are also available like, for instance, the set or a range of allowed values. Such a
description of parameters allows for manifold generic convenience applications. Current examples
are the ParameterSetTagger, which facilitates the documentation of command line arguments on
basis of a ParameterSet, or the GalaxyAdaptor, which allows for an easy integration of Jstacs
applications into the Galaxy webserver. We give examples for the use and creation of Parameters
and ParameterSets in the second sub-section.

Finally, the same problem also occurrs for the results of computations. With a generic documen-
tation, these results can be displayed together with some annotation in a way that is appropriate

7

Administrator
Highlight

Administrator
Note
Singleton
Class

http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs/io/XMLParser.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs/io/XMLParser.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSetTagger.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/utils/galaxy/GalaxyAdaptor.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html

for the current application. In Jstacs, we use Results and ResultSets for this purpose, and we show
how to use these in the third sub-section.

3.1 XMLParser

In the following examples, let buffer be some StringBuffer. All kinds of primitives or Storables are
appended to an existing StringBuffer surrounded by the specified XML tags by the static method
appendObjectWithTags of XMLParser. For example, the following two lines append an integer with
the value 5 using the tag integer, and a String with the tag foo:

int integer = 5;

XMLParser.appendObjectWithTags(buffer , integer , "integer");

String bar = "hello world";

XMLParser.appendObjectWithTags(buffer , bar , "foo");

If we assume that buffer was an empty StringBuffer before appeding these two elements, the
resulting XML text will be

<integer >5</integer >

<foo>hallo welt</foo>

In exactly the same manner, we can append XML representations of arrays of primitives, for
example a two-dimensional array of double s

double [][] da = new double [4][6];

XMLParser.appendObjectWithTags(buffer , da , "da");

or complete Jstacs models that implement the Storable interface

HomogeneousMM hMM = new HomogeneousMM(new HomMMParameterSet(new

AlphabetContainer(DNAAlphabet.SINGLETON), 4, "hmm(0)", (byte) 0))

;

XMLParser.appendObjectWithTags(buffer , hMM , "hMM");

or even arrays of Storables:

Storable [] storAr = ArrayHandler.createArrayOf(hMM , 5);

XMLParser.appendObjectWithTags(buffer , storAr , "storAr");

The interface Storable only defines two things: first, an implemening class must provide a public
method toXML() that returns the XML representation of this class as a StringBuffer, and second,
it must provide a constructor that takes a single StringBuffer as its argument and re-creates an
object out of this representation. The only exception from this rule are singleton, i.e., classes that
implement the Singleton interface.

Of course, you can use the appendObjectWithTags method of the XMLParser inside the toXML

method. By this means, it is possible to break down the conversion of complex models into smaller
pieces if the building-blocks of a model are also Storables.

In analogy to storing objects, the XMLParser also provides facilities for loading primitives and
Storables from their XML representation. These can also be used in the constructor according to
the Storable interface. For example, we can load the value of the integer, we stored a few lines ago
by calling

integer = (Integer) XMLParser.extractObjectForTags(buffer , "integer");

where the second argument of extractObjectForTags is the tag surrounding the value and, of course,
must be identical to the tag we specified when storing the value. Since extractObjectForTags is a
generic method, we must explicitly cast the returned value to an Integer. As an alternative, we
can also specify the class of the return type as a third argument like in the following example

8

Administrator
Highlight

Administrator
Note
NEIN!!!

Administrator
Note
ArrayHandler?

Administrator
Highlight

Administrator
Note
AnnotateEntity, DataType

Administrator
Highlight

http://www.jstacs.de/api/de/jstacs/results/Result.html
http://www.jstacs.de/api/de/jstacs/results/ResultSet.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs/io/XMLParser.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs//Singleton.html
http://www.jstacs.de/api/de/jstacs/io/XMLParser.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs/io/XMLParser.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs//Storable.html

da = XMLParser.extractObjectForTags(buffer , "da", double [][]. class);

Here, we load the two-dimensional array of doubles that we stored a few lines ago. In perfect
analogy, we can also load a single instance of a class implementing Storable

hMM = XMLParser.extractObjectForTags(buffer , "hMM", HomogeneousMM.class

);

where in this case we again specify the class of the return type in the third argument, or arrays of
Storable

storAr = (Storable []) XMLParser.extractObjectForTags(buffer , "storAr");

Of course, we can also specify the concrete sub-class of Storable for an array, if all instances
are of the same class like in the following example:

HomogeneousMM [] hmAr = ArrayHandler.createArrayOf(hMM , 5);

XMLParser.appendObjectWithTags(buffer , hmAr , "hmAr");

hmAr = (HomogeneousMM []) XMLParser.extractObjectForTags(buffer , "hmAr")

;

3.2 Parameters & ParameterSets

Parameters in Jstacs are represented by different sub-classes of Parameter, which define different
types of parameters. Parameters that take primitives or strings as values are defined by the class
SimpleParameter, parameters that accept values from some enum type are defined by EnumPara-
meter, parameters where the user can select from a number of predefined values are defined by
SelectionParameter, parameters that represent a file argument are defined by FileParameter, and
parameters that represent a range of values are represented by RangeParameter. In the following,
we give some examples for the creation of parameter objects. Let us assume, we want to define
a parameter for the length of the sequences accepted by some model. The maximum sequence
length this model can handle is 100 and, of course, lengths cannot be negative. We create such a
parameter object by the following lines of code:

SimpleParameter simplePar = new SimpleParameter(DataType.INT , "Sequence

length", "The required length of a sequence", true , new

NumberValidator <Integer >(1, 100), 10);

The first argument of the constructor defines the data type of the accepted values, which is an int

in the example. The next two arguments are the name of and the comment for the parameter.
The following boolean specifies if this parameter is required (true) or optional (false). The Num-
berValidator in the fifth argument allows for specifying the range of allowed values, which is 0 to
100 (inclusive) in the example. Finally, we define a default value for this parameter, which is 10 in
the example. Similarly, we can define a SimpleParameter for some optional parameter that takes
strings as values by the following line:

SimpleParameter simplePar2 = new SimpleParameter(DataType.STRING , "Name"

, "The name of the game", false);

Again, the second and third arguments are the name and the comment, respectively.
We can define an EnumParameter, which accept values from some enum type as follows

EnumParameter enumpar = new EnumParameter(DataType.class , "Data types",

true);

9

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/parameters/SimpleParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/EnumParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/EnumParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/SelectionParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/FileParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/RangeParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/validation/NumberValidator.html
http://www.jstacs.de/api/de/jstacs/parameters/validation/NumberValidator.html
http://www.jstacs.de/api/de/jstacs/parameters/SimpleParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/EnumParameter.html

where the first argument defines the class of the enum type, the second is the name of that collection
of values, and the third argument again specifies if this parameter is required.

A SelectionParameter accepts values from a pre-defined collection of values. For instance, if we
want the user to select from two double values 5.0 and 5E6, which are named “small” and “large”,
we can do so as follows:

SelectionParameter collPar = new SelectionParameter(DataType.DOUBLE , new

String []{"small", "large"}, new Double []{5.0 ,5E6}, "Numbers", "A

selection of numbers", true);

For the special case, where the user shall select the concrete implementation of an abstract
class of interface, Jstacs provides a static convenience method getSelectionParameter in the class
SubclassFinder. This method requires the specification of the super-class of the ParameterSetthat
can be used to instantiate the implementations, the root package in which sub-classes or imple-
mentations shall be found, and, again, a name, a comment, and if this parameter is required. For
example, we can find all classes that can be instantiated by a sub-class of SequenceScoringParam-
eterSetthe package de and its sub-packages by calling

collPar = SubclassFinder.getSelectionParameter(

SequenceScoringParameterSet.class , "de", "Sequence scores", "All

Sequence scores in Jstacs that can be created from parameter sets",

true);

The method returns a SelectionParameter from which a user can select the appropriate implemen-
tation. Classes that can be found in this manner must implement an additional interface called
InstantiableFromParameterSet. The main purpose of this interface is that implementing classes
must provide a constructor that takes a InstanceParameterSet as its only argument in analogy to
the constructor of Storable working on a StringBuffer. InstanceParameterSets will be explained
a few lines below.

As the name suggests, ParameterSets represent sets of such parameters. The most simple
implementation of a ParameterSet is the SimpleParameterSet, which can be created just from a
number of Parameters like in the following example:

SimpleParameterSet parSet = new SimpleParameterSet(simplePar ,collPar);

Other ParameterSets are the ExpandableParameterSet and ArrayParameterSet, which can handle
series of identical parameter types.

One special case of ParameterSets is the InstanceParameterSet, which has several sub-classes
that can be used to instantiate new Jstacs objects like statistical models, scoring functions, or
classifiers. If a new model, say an implementation of the TrainableStatisticalModel interface, shall
be found via the SubclassFinder, or its parameters shall be set in a command line program using the
ParameterSetTagger or in Galaxy, we need to create a new sub-class of InstanceParameterSet that
represents all (external) parameters of this model. In this sub-class we must basically implement
two methods: getInstanceName and getInstanceComment return the name of and a comment on the
model class (i.e., in the example, the model we just implemented) that may be of help for a potential
user. The constructor does the main work. By a call to the super-constructor, it initializes the
list of parameters in this set and then adds the parameters of the model. For implementations of
the TrainableStatisticalModel interface we may also extend SequenceScoringParameterSet, which
already handles the AlphabetContainer and length of this model.

Not always do we have flat hierarchies of parameters. For instance, the choice of subsequent
parameters may depend on the selection from some SelectionParameter. For this purpose, Jstacs
provides a sub-class of Parameter that only serves as a container for a ParameterSet and is called
ParameterSetContainer. Like other parameters, this container takes a name and a comment in its
constructor, whereas the third argument is a ParameterSet:

10

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

http://www.jstacs.de/api/de/jstacs/parameters/SelectionParameter.html
http://www.jstacs.de/api/de/jstacs/utils/SubclassFinder.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/SequenceScoringParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/SequenceScoringParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/SelectionParameter.html
http://www.jstacs.de/api/de/jstacs//InstantiableFromParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/InstanceParameterSet.html
http://www.jstacs.de/api/de/jstacs//Storable.html
http://www.jstacs.de/api/de/jstacs/parameters/InstanceParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/SimpleParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/ExpandableParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/ArrayParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/InstanceParameterSet.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/utils/SubclassFinder.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSetTagger.html
http://www.jstacs.de/api/de/jstacs/parameters/InstanceParameterSet.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/parameters/SequenceScoringParameterSet.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/parameters/SelectionParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSetContainer.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html

ParameterSetContainer container = new ParameterSetContainer("Set", "A

set of parameters", parSet);

Since such a ParameterSetContainer can itself be part of another ParameterSet, we can build hier-
archies or trees of Parameters and ParameterSets. ParameterSetContainers are also used internally
to create SelectionParameters from an array of ParameterSets, e.g., for getSelectionParameter in
the SubclassFinder.

3.3 Results & ResultSets

We distingiush two types of Results, namely NumericalResults and CategoricalResults. The first
are results containing numerical values, which can be aggregated, for instance averaged, while
the latter are results of categorial values like strings or booleans. For example, we can create a
NumericalResult containing a single double value by the following line

NumericalResult res = new NumericalResult("A double result", "This

result contains some double value", 5.0);

where, in analogy to Parameters, the first and the second argument are the name of and a comment
on the result, respectively.

Similarly, we create a CategoricalResult by the following line

CategoricalResult catRes = new CategoricalResult("A boolean result", "

This result contains some boolean", true);

for a result that is a single boolean value.
As for ParameterSets, we can create sets of results using the class ResultSet

ResultSet resSet = new ResultSet(new Result []{res ,catRes});

where we may also combine NumericalResults and CategoricalResults into a single set. Besides
simple ResultSets, Jstacs comprises NumericalResultSets for combining only NumericalResults,
which can be created in complete analogy to ResultSets.

Jstacs also provides a special class for averaging NumericalResult. This class is called MeanRe-
sultSet, and computes the average and standard error of the corresponding values of a number of
NumericalResultSets. The corresponding NumericalResults in the NumericalResultSet are identi-
fied by their name as speficied upon creation.

We first create an empty MeanResultSet by calling its default constructor

MeanResultSet mrs = new MeanResultSet ();

and susequently add a number of NumericalResultSets to this MeanResultSet.

Random r = new Random ();

for(int i=0;i<10;i++){

mrs.addResults(new NumericalResultSet(new NumericalResult("Single", "

A single result to be aggregated", r.nextDouble ())));

}

In the example, these are just 10 uniformly distributed random numbers.
Finally, we call the method getStatistics of MeanResultSet to obtain the mean and standard

error of the previously added values.

System.out.println(mrs.getStatistics ());

the result of this method is again returned as a NumericalResultSet. In the example, it is just
printed to standard out.

11

Administrator
Highlight

http://www.jstacs.de/api/de/jstacs/parameters/ParameterSetContainer.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSetContainer.html
http://www.jstacs.de/api/de/jstacs/parameters/SelectionParameter.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/utils/SubclassFinder.html
http://www.jstacs.de/api/de/jstacs/results/Result.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResult.html
http://www.jstacs.de/api/de/jstacs/results/CategoricalResult.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResult.html
http://www.jstacs.de/api/de/jstacs/parameters/Parameter.html
http://www.jstacs.de/api/de/jstacs/results/CategoricalResult.html
http://www.jstacs.de/api/de/jstacs/parameters/ParameterSet.html
http://www.jstacs.de/api/de/jstacs/results/ResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResult.html
http://www.jstacs.de/api/de/jstacs/results/CategoricalResult.html
http://www.jstacs.de/api/de/jstacs/results/ResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResult.html
http://www.jstacs.de/api/de/jstacs/results/ResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResult.html
http://www.jstacs.de/api/de/jstacs/results/MeanResultSet.html
http://www.jstacs.de/api/de/jstacs/results/MeanResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResult.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResultSet.html
http://www.jstacs.de/api/de/jstacs/results/MeanResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResultSet.html
http://www.jstacs.de/api/de/jstacs/results/MeanResultSet.html
http://www.jstacs.de/api/de/jstacs/results/MeanResultSet.html
http://www.jstacs.de/api/de/jstacs/results/NumericalResultSet.html

4 First main course: Models

Statistical models that can be learned on a single input data set are represented by the interface
TrainableStatisticalModel of Jstacs. In most cases, such models are learned by generative learn-
ing principles like maximum likelihood or maximum a-posteriori. For models that are learned
from multiple data sets, commonly by discriminative learning principles, Jstacs provides another
interface DifferentiableStatisticalModel, which will be presented in the next section.

In the following, we briefly describe all methods that are defined in the TrainableStatisti-
calModel interface. For convenience, an abstract implementation AbstractTrainSM of Train-
ableStatisticalModel exists, which provides standard implementations for many of these methods.

TrainableStatisticalModel extends the standard interface Cloneable and, hence, implementa-
tions must provide a clone() method, which returns a deep copy of all fields of an instance:

* if something went wrong while cloning

Since the implementation of the clone method is very model-specific, it must be implemented anew
for each implementation of the TrainableStatisticalModel interface.

The parameters of statistical models are typically learned from some training data set. For this
purpose, TrainableStatisticalModel specifies a method train

/**

that learns the parameters from the training data set data. By specification, successive calls to
train must result in a model trained on the data set provided in the last call, as opposed to
incremental learning on all data sets.

Besides this simple train method, TrainableStatisticalModel also declares another one

/**

that allows for the specification of weights for each input sequence. Since the previous method
is a special case of this one where all weights are equal to 1, only the weighted variant must be
implemented, if you decide to extend AbstractTrainSM. This method should be implemented such
that the specification of null weights leads to the standard variant with all weights equal to 1. The
actual training method may be totally problem and implementation specific. However, in most
cases you might want to use one of the generative learning principles ML or MAP.

After a model has been trained it can be used to compute the likelihood of a sequence given the
model and its (trained) parameters. The TrainableStatisticalModel interface specifies a number of
methods for this purpose.

The first method just requires the specification of the Sequence object for which the likelihood
is to be computed:

*

* @param seq

If the TrainableStatisticalModel has not been trained prior to calling this method, it is allowed to
throw a NotTrainedException. The meaning of this method is slightly different for inhomogeneous,
that is position-dependent, and homogeneous models. In case of an inhomogeneous model, for
instance a position weight matrix, the specified Sequence must be of the same length as the model,
i.e. the number of columns in the weight matrix. Otherwise an Exception should be thrown, since
users may be tempted to misinterpret the return value as a probability of the complete, possibly
longer or shorter, provided sequence. In case of homogeneous models, for instance homogeneous
Markov models, this method must return the likelihood of the complete sequence. Since this is not
always the desired result, to other methods are specified, which allow for computing the likelihood
of sub-sequences. This method should also check if the provided Sequence is defined over the same
AlphabetContainer as the model.

12

http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/differentiable/DifferentiableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html

The first of these methods is

* as for the method {@link #getLogScoreFor(Sequence)}.

*

which computes the likelihood of the sub-sequence starting at position startpos. The resulting
value of the likelihood must be the same as if the user had called getProbFor(sequence.getSubSequence(startpos)).

The second method reads

/**

and computes the likelihood of the sub-sequence starting at position startpos up to position
endpos (inclusive). The resulting value of the likelihood must be the same as if the user had called
getProbFor(sequence.getSubSequence(startpos,endpos-startpos1))+. Only the last method must
be implemented if we decide for extending AbstractTrainSM, since the previous two can again be
perceived as special cases.

In some cases, for instance for very long sequences, the computation of the likelihood may lead
to numerical problems. Hence, the TrainableStatisticalModel interface in complete analogy defines
methods for computing the log-likelihood. These methods are

Although the implementation of the log-variants is not required if you extend AbstractTrainSM,
we strongly recommend to also implement getLogProbFor(Sequence,int,int) because otherwise it
defaults to Math.log(getProbFor(Sequence,int,int)) and, hence, inherits numerical problems that
may occur for this method.

For convenience, TrainableStatisticalModel also provides a method for computing the log-
likelihoods of all Sequences in a DataSet

which is already implemented in AbstractTrainSMby successive calls to getLogProbFor(Sequence).
This method also exists in a variant

where the user may specify an existing array for storing the computed log-likelihoods. This may
be reasonable to save memory, for instance if we compute the log-likelihoods of a large number of
sequences using different models.

If we want to use Bayesian principles for learning the parameters of a model, we need to specify
a prior distribution on the parameter values. In some cases, for instance for using MAP estimation
in an expectation maximization (EM) algorithm, it is not only necessary to estimate the parameters
taking the prior into account, but also to know the value of the prior (or a term proportional to
it). For this reason, the TrainableStatisticalModel interface defines the methods

and

which return this prior term and its logarithm, respectively. In the default implementation of
AbstractTrainSM, the first method defaults to Math.exp(getLogPriorTerm()).

If the concept of a prior is not applicable for a certain model or other reasons prevent you from
implementing these methods, getLogPriorTerm() should return Double.NEGATIVE_INFINITY.

Generative TrainableStatisticalModels can also be used to create new, artificial data according
to the model assumptions. For this purpose, the TrainableStatisticalModel interface specifies a
method

13

http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html

wich returns a DataSet of numberOfSequences Sequences drawn from the model using its current
parameter values. The second parameter seqLength allows for the specification of the lenghts of
the drawn Sequences. For inhomogeneous model, which inherently define the length of possible
sequence, this parameter should be null or an array of length 0. For homogeneous models, the
lengths may either be specified for all drawn sequences by a single int value or by an array of
length numberOfSequences specifying the length of each drawn sequence independently.

The implementation of this method is not always possible. In its default implementation in
AbstractTrainSM, this method just throws an Exception and must be explicitly overridden to be
functional.

TrainableStatisticalModel also defines some methods that are basically getters for typical prop-
erties of a TrainableStatisticalModel implementation. These are

which returns the current AlphabetContainer of the model,

which returns a (helpful) name of the current TrainableStatisticalModel instance,

which returns the length of the TrainableStatisticalModel (0 for homogeneous models), and

which returns the maximum number of preceeding positions that are considered for (conditional)
probabilities. For instance, for a position weight matrix, this method should return 0, whereas for
a homogeneous Markov model of order 2, it should return 2.

The method

must return true if the model has already been trained, i.e., the train method has been called at
least once, and false otherwise.

The methods

and

can be used to return some properties of a TrainableStatisticalModel like the number of parameters,
the depth of some tree structure, or whatever seems useful. In the latter case, these characteristics
are limited to numerical values. If a model is used, e.g., in a cross validation (KFoldCrossVali-
dation), these numerical properties are averaged over all cross validation iterations and displayed
together with the performance measures.

The method

should return some String representation of the current model. Typically, this representation
should include the current parameter values in some suitable format.

Finally, the method

can be used to replace the current AlphabetContainer by some (compatible) other AlphabetCon-
tainer. Compatible means that the new AlphabetContainer must define an identical alphabet,
although it may be a different instance. This method may be helpful if in successive evaluations
the consistency check between alphabets can be reduced to the comparison of references. The
default implement in AbstractTrainSM should do the right thing in most cases.

Besides the possibility to implement new statistical models in Jstacs, many of them are already
implemented and can readily be used. As a central facility for creating model instances of many
standard models, Jstacs provides a TrainSMFactory.

Using the TrainSMFactory, we can create a new position weight matrix (PWM) model by
calling

14

http://www.jstacs.de/api/de/jstacs/data/DataSet.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/data/sequences/Sequence.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainableStatisticalModel.html
http://www.jstacs.de/api/de/jstacs/classifiers/assessment/KFoldCrossValidation.html
http://www.jstacs.de/api/de/jstacs/classifiers/assessment/KFoldCrossValidation.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/data/AlphabetContainer.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/AbstractTrainSM.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainSMFactory.html
http://www.jstacs.de/api/de/jstacs/sequenceScores/statisticalModels/trainable/TrainSMFactory.html

TrainableStatisticalModel pwm = TrainableStatisticalModelFactory.

createPWM(alphabet , 10, 4.0);

where we need to specify the (discrete) alphabet, the length of the matrix (10), i.e. the number of
positions modeled, and an equivalent sample size (ESS) for MAP estimation (4.0). For the concept
of an equivalent sample size and the BDeu prior used for most models in Jstacs, we refer the reader
to (Heckerman). If the ESS is set to 0.0, the parameters are estimated by the ML instead of the
MAP principle.

The factory method for an inhomogeneous Markov model of arbitrary order – the PWM model
is just an inhomogeneous Markov model of order 0 – is

TrainableStatisticalModel imm = TrainableStatisticalModelFactory.

createInhomogeneousMarkovModel(alphabet , 12, 4.0, (byte) 2);

where the parameters are in complete analogy to the PWM model, expect the last one specifying
the order of the inhomogeneous Markov model, which is 2 in the example.

We can also create permuted Markov models of order 1 and 2, where the positions of the
sequences may be permuted before building an inhomogeneous Markov model. The permutation
is chosen such that the mutual information between adjacent positions is maximized. We create a
permuted Markov model of length 7 and order 1 by calling

TrainableStatisticalModel pmm = TrainableStatisticalModelFactory.

createPermutedMarkovModel(alphabet , 7, 4.0, (byte) 1);

Homogeneous Markov models are created by

TrainableStatisticalModel hmm = TrainableStatisticalModelFactory.

createHomogeneousMarkovModel(alphabet , 400.0 , (byte) 3);

where the first parameter again specifies the alphabet, the second parameter

TrainableStatisticalModel zoops = TrainableStatisticalModelFactory.

createZOOPS(pwm , hmm , new double []{4,4}, true);

pwm.train(sam);

HomogeneousMM hmm2 = new HomogeneousMM(new HomMMParameterSet(alphabet ,

4.0, "hmm (0)", (byte) 0));

BayesianNetworkTrainSM bnm = new BayesianNetworkTrainSM(new

BayesianNetworkTrainSMParameterSet(alphabet , 8, 4.0, "Bayesian

network", ModelType.BN , (byte) 1, LearningType.ML_OR_MAP));

HMMTrainingParameterSet trainingPars = new BaumWelchParameterSet(5, new

SmallDifferenceOfFunctionEvaluationsCondition(1E-6),2);

Emission [] emissions = new Emission []{new DiscreteEmission(alphabet , 4.0

),new DiscreteEmission(alphabet , new double []{2.0 ,1.0 ,1.0 ,2.0})};

AbstractHMM myHMM = HMMFactory.createErgodicHMM(trainingPars , 1, 4.0,

0.1, 100.0, emissions);

HigherOrderHMM hohmm = new HigherOrderHMM(trainingPars , new String []{"A"

,"B"}, emissions ,

new TransitionElement(null , new int []{0}, new double []{4.0}),

new TransitionElement(new int []{0}, new int[]{0,1}, new double

[]{2.0 ,2.0}),

new TransitionElement(new int []{1}, new int []{0}, new double []{4.0}))

;

15

System.out.println(hohmm.getGraphvizRepresentation(null));

MixtureTrainSM mixEm = new MixtureTrainSM(8, new

TrainableStatisticalModel []{pwm ,pwm}, 3, new double []{4,0 ,4.0}, 1,

new SmallDifferenceOfFunctionEvaluationsCondition(1E-6),

Parameterization.LAMBDA);

MixtureTrainSM mixGibbs = new MixtureTrainSM(8, new

TrainableStatisticalModel []{pwm ,pwm}, 3, new double []{4,0 ,4.0}, 100,

1000, new VarianceRatioBurnInTest(new

VarianceRatioBurnInTestParameterSet(3, 1.2)));

StrandTrainSM strandModel = new StrandTrainSM(imm , 3, 0.5, 1, new

SmallDifferenceOfFunctionEvaluationsCondition(1E-6),

Parameterization.LAMBDA);

ZOOPSTrainSM zoops2 = new ZOOPSTrainSM(pwm , hmm , true , 4, 0.7, null , 1,

new SmallDifferenceOfFunctionEvaluationsCondition(1E-6),

Parameterization.LAMBDA);

5 Second main course: ScoringFunctions

6 Third main course: Classifiers

7 Intermediate course: Optimization

8 Dessert: Alignments

9 Like some sweets: Utils and goodies

16

	Preface
	Starter: Data handling
	Alphabets
	Sequences
	DataSets

	Intermediate course: XMLParser, Parameters, and Results
	XMLParser
	Parameters & ParameterSets
	Results & ResultSets

	First main course: Models
	Second main course: ScoringFunctions
	Third main course: Classifiers
	Intermediate course: Optimization
	Dessert: Alignments
	Like some sweets: Utils and goodies

