|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.models.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
public abstract class AbstractConditionalDiscreteEmission
The abstract super class of discrete emissions.
| Field Summary | |
|---|---|
protected AlphabetContainer |
con
The alphabet of the emissions |
protected int[] |
counter
The counter for the sampling steps of each sampling. |
protected double[] |
ess
The equivalent sample sizes for each condition |
protected double[][] |
grad
The array for storing the gradients for each parameter |
protected double[][] |
hyperParams
The hyper-parameters for the prior on the parameters |
protected double[] |
logNorm
The log-normalization constants for each condition |
protected int |
offset
The offset of the parameter indexes |
protected double[][] |
params
The parameters of the emission |
protected File[] |
paramsFile
The files for saving the parameters during the sampling. |
protected double[][] |
probs
The parameters transformed to probabilites |
protected BufferedReader |
reader
The reader for the paramsFile after a sampling. |
protected int |
samplingIndex
The index of the current sampling. |
protected double[][] |
statistic
The array for storing the statistics for each parameter |
protected BufferedWriter |
writer
The writer for the paramsFile in a sampling. |
| Constructor Summary | |
|---|---|
protected |
AbstractConditionalDiscreteEmission(AlphabetContainer con,
double[][] hyperParams)
This is a simple constructor for a AbstractConditionalDiscreteEmission defining the individual hyper parameters. |
protected |
AbstractConditionalDiscreteEmission(AlphabetContainer con,
double[][] hyperParams,
double[][] initHyperParams)
This constructor creates a AbstractConditionalDiscreteEmission defining the individual hyper parameters for the
prior used during training and initialization. |
protected |
AbstractConditionalDiscreteEmission(AlphabetContainer con,
int numberOfConditions,
double ess)
This is a simple constructor for a AbstractConditionalDiscreteEmission based on the equivalent sample size. |
protected |
AbstractConditionalDiscreteEmission(StringBuffer xml)
Creates a AbstractConditionalDiscreteEmission from its XML representation. |
| Method Summary | |
|---|---|
void |
acceptParameters()
This methods accepts the drawn parameters. |
void |
addGradientOfLogPriorTerm(double[] gradient,
int offset)
This method computes the gradient of Emission.getLogPriorTerm() for each
parameter of this model. |
void |
addToStatistic(boolean forward,
int startPos,
int endPos,
double weight,
Sequence seq)
This method adds the weight to the internal sufficient statistic. |
protected void |
appendFurtherInformation(StringBuffer xml)
This method appends further information to the XML representation. |
AbstractConditionalDiscreteEmission |
clone()
|
void |
drawParametersFromStatistic()
This method draws the parameters using a sufficient statistic representing a posteriori density. |
void |
estimateFromStatistic()
This method estimates the parameters from the internal sufficient statistic. |
void |
extendSampling(int start,
boolean append)
This method allows to extend a sampling. |
protected void |
extractFurtherInformation(StringBuffer xml)
This method extracts further information from the XML representation. |
void |
fillCurrentParameter(double[] params)
Fills the current parameters in the global code>params array using the internal offset. |
void |
fillSamplingGroups(int parameterOffset,
LinkedList<int[]> list)
Adds the groups of indexes of those parameters of this emission that should be sampled together in one step of a grouped sampling procedure, each as an int[], into list. |
protected void |
finalize()
|
protected void |
fromXML(StringBuffer xml)
This method is internally used by the constructor AbstractConditionalDiscreteEmission(StringBuffer). |
AlphabetContainer |
getAlphabetContainer()
This method returns the AlphabetContainer of this emission. |
protected abstract int |
getConditionIndex(boolean forward,
int seqPos,
Sequence seq)
This method returns an index encoding the condition. |
protected static double[][] |
getHyperParams(double ess,
int numConditions,
int numEmissions)
Returns the hyper-parameters for all parameters and a given ess. |
double |
getLogGammaScoreFromStatistic()
This method calculates a score for the current statistics, which is independent from the current parameters In general the gamma-score is a product of gamma-functions parameterized with the current statistics |
double |
getLogPosteriorFromStatistic()
This method calculates the a-posteriori probability for the current statistics |
double |
getLogPriorTerm()
Returns a value that is proportional to the log of the prior. |
double |
getLogProbAndPartialDerivationFor(boolean forward,
int startPos,
int endPos,
IntList indices,
DoubleList partDer,
Sequence seq)
Returns the logarithmic score for a Sequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations. |
double |
getLogProbFor(boolean forward,
int startPos,
int endPos,
Sequence seq)
This method computes the logarithm of the likelihood. |
String |
getNodeLabel(double weight,
String name,
NumberFormat nf)
Returns the graphviz label of the node containing this emission. |
String |
getNodeShape(boolean forward)
Returns the graphviz string for the shape of the node. |
int |
getNumberOfParameters()
Returns the number of parameters of this emission. |
int |
getSizeOfEventSpace()
Returns the size of the event space, i.e., the number of possible outcomes, for the random variables of this emission |
void |
initForSampling(int starts)
This method initializes the instance for the sampling. |
void |
initializeFunctionRandomly()
This method initializes the emission randomly. |
boolean |
isInSamplingMode()
This method returns true if the object is currently used in
a sampling, otherwise false. |
boolean |
parseNextParameterSet()
This method allows the user to parse the next set of parameters (from a file). |
boolean |
parseParameterSet(int start,
int n)
This method allows the user to parse the set of parameters with index n of a certain sampling (from a file). |
protected void |
precompute()
This method precomputes some normalization constant and probabilities. |
void |
resetStatistic()
This method resets the internal sufficient statistic. |
void |
samplingStopped()
This method is the opposite of the method SamplingComponent.extendSampling(int, boolean). |
void |
setLinear(boolean linear)
If set to true, the probabilities are mapped to colors by directly, otherwise a logistic mapping is used to emphasize deviations from the uniform distribution. |
void |
setParameter(double[] params,
int offset)
This method sets the internal parameters using the given global parameter array, the global offset of the HMM and the internal offset. |
int |
setParameterOffset(int offset)
This method sets the internal parameter offset and returns the new parameter offset for further use. |
void |
setShape(String shape)
Sets the graphviz shape of the node that uses this emission to some non-standard value (standard is "house"). |
abstract String |
toString()
|
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Field Detail |
|---|
protected File[] paramsFile
protected int[] counter
protected int samplingIndex
protected BufferedWriter writer
paramsFile in a sampling.
protected BufferedReader reader
paramsFile after a sampling.
protected int offset
protected AlphabetContainer con
protected double[][] params
protected double[][] probs
protected double[][] hyperParams
protected double[][] statistic
protected double[][] grad
protected double[] logNorm
protected double[] ess
| Constructor Detail |
|---|
protected AbstractConditionalDiscreteEmission(AlphabetContainer con,
int numberOfConditions,
double ess)
AbstractConditionalDiscreteEmission based on the equivalent sample size.
con - the AlphabetContainer of this emissionnumberOfConditions - the number of conditionsess - the equivalent sample size (ess) of this emission that is equally distributed over all parametersAbstractConditionalDiscreteEmission(AlphabetContainer, double[][])
protected AbstractConditionalDiscreteEmission(AlphabetContainer con,
double[][] hyperParams)
AbstractConditionalDiscreteEmission defining the individual hyper parameters.
con - the AlphabetContainer of this emissionhyperParams - the individual hyper parameters for each parameterAbstractConditionalDiscreteEmission(AlphabetContainer, double[][])
protected AbstractConditionalDiscreteEmission(AlphabetContainer con,
double[][] hyperParams,
double[][] initHyperParams)
AbstractConditionalDiscreteEmission defining the individual hyper parameters for the
prior used during training and initialization.
con - the AlphabetContainer of this emissionhyperParams - the individual hyper parameters for each parameter (used during training)initHyperParams - the individual hyper parameters for each parameter used in initializeFunctionRandomly()
protected AbstractConditionalDiscreteEmission(StringBuffer xml)
throws NonParsableException
AbstractConditionalDiscreteEmission from its XML representation.
xml - the XML representation.
NonParsableException - if the XML representation could not be parsed| Method Detail |
|---|
protected static double[][] getHyperParams(double ess,
int numConditions,
int numEmissions)
ess - the equivalent sample sizenumConditions - the number of conditionsnumEmissions - the number of emissions, assumed to be equal for all conditions
public AbstractConditionalDiscreteEmission clone()
throws CloneNotSupportedException
clone in class ObjectCloneNotSupportedExceptionpublic void setShape(String shape)
shape - the shape of the node
public void addGradientOfLogPriorTerm(double[] gradient,
int offset)
DifferentiableEmissionEmission.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index (offset + internal offset).
addGradientOfLogPriorTerm in interface DifferentiableEmissiongradient - the array of gradientsoffset - the start index of the HMM in the grad array, where the
partial derivations for the parameters of the HMM shall be
enteredEmission.getLogPriorTerm(),
DifferentiableEmission.setParameterOffset(int)public double getLogPriorTerm()
Emission
getLogPriorTerm in interface EmissionModel.getLogPriorTerm()
public double getLogProbAndPartialDerivationFor(boolean forward,
int startPos,
int endPos,
IntList indices,
DoubleList partDer,
Sequence seq)
throws OperationNotSupportedException
DifferentiableEmissionSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.
getLogProbAndPartialDerivationFor in interface DifferentiableEmissionforward - a switch whether to use the forward or the reverse complementary strand of the sequencestartPos - the start position in the SequenceendPos - the end position in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zeropartDer - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zeroseq - the Sequence
Sequence
OperationNotSupportedException - if forward==false and the reverse complement of the sequence can not be computed
public double getLogProbFor(boolean forward,
int startPos,
int endPos,
Sequence seq)
throws OperationNotSupportedException
Emission
getLogProbFor in interface Emissionforward - whether to use the forward or the reverse strandstartPos - the start positionendPos - the end positionseq - the sequence
OperationNotSupportedException - if forward=false and the reverse complement of the sequence seq is not definedpublic void initializeFunctionRandomly()
Emission
initializeFunctionRandomly in interface Emissionprotected void precompute()
logNorm,
probspublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.
toXML in interface Storableprotected void appendFurtherInformation(StringBuffer xml)
xml - the XML representation
protected void fromXML(StringBuffer xml)
throws NonParsableException
AbstractConditionalDiscreteEmission(StringBuffer).
xml - the StringBuffer containing the xml representation of an instance
NonParsableException - if the StringBuffer is not parsableAbstractConditionalDiscreteEmission(StringBuffer)
protected void extractFurtherInformation(StringBuffer xml)
throws NonParsableException
xml - the XML representation
NonParsableException - if the information could not be reconstructed out of the StringBuffer xml
public void addToStatistic(boolean forward,
int startPos,
int endPos,
double weight,
Sequence seq)
throws OperationNotSupportedException
Emissionweight to the internal sufficient statistic.
addToStatistic in interface Emissionforward - whether to use the forward or the reverse strandstartPos - the start positionendPos - the end positionweight - the weight of the sequenceseq - the sequence
OperationNotSupportedException - if forward=false and the reverse complement of the sequence seq is not defined
protected abstract int getConditionIndex(boolean forward,
int seqPos,
Sequence seq)
forward - a switch to decide whether to use the forward or the reverse complementary strand (e.g. for DNA sequences)seqPos - the position in the sequence seqseq - the sequence
public void estimateFromStatistic()
Emission
estimateFromStatistic in interface Emissionpublic void resetStatistic()
Emission
resetStatistic in interface Emissionpublic abstract String toString()
toString in class Object
public void setParameter(double[] params,
int offset)
DifferentiableEmission
setParameter in interface DifferentiableEmissionparams - the global parameter array of the classifieroffset - the offset of the HMMDifferentiableEmission.setParameterOffset(int)public AlphabetContainer getAlphabetContainer()
EmissionAlphabetContainer of this emission.
getAlphabetContainer in interface EmissionAlphabetContainer of this emissionpublic void fillCurrentParameter(double[] params)
DifferentiableEmission
fillCurrentParameter in interface DifferentiableEmissionparams - the global parameter array of the HMMDifferentiableEmission.setParameterOffset(int)public int setParameterOffset(int offset)
DifferentiableEmission
setParameterOffset in interface DifferentiableEmissionoffset - the offset to be set
public void drawParametersFromStatistic()
throws Exception
SamplingFromStatisticSamplingComponent.acceptParameters() so that they can later be parsed using the
methods of the interface.
SamplingComponent.initForSampling(int) should be
called.
drawParametersFromStatistic in interface SamplingFromStatisticException - if there is a problem with drawing the parameters, the initialization, ...SamplingComponent.initForSampling(int),
SamplingComponent.acceptParameters()public double getLogGammaScoreFromStatistic()
SamplingEmission
getLogGammaScoreFromStatistic in interface SamplingEmission
public void acceptParameters()
throws IOException
SamplingComponent
acceptParameters in interface SamplingComponentIOException - if the file could not be handled correctlypublic double getLogPosteriorFromStatistic()
SamplingFromStatistic
getLogPosteriorFromStatistic in interface SamplingFromStatistic
public void extendSampling(int start,
boolean append)
throws IOException
SamplingComponent
extendSampling in interface SamplingComponentstart - the index of the samplingappend - whether to append the sampled parameters to an existing file
or to overwrite the file
IOException - if the file could not be handled correctly
public void initForSampling(int starts)
throws IOException
SamplingComponent
initForSampling in interface SamplingComponentstarts - the number of different sampling starts that will be done
IOException - if something went wrongFile.createTempFile(String, String, java.io.File )public boolean isInSamplingMode()
SamplingComponenttrue if the object is currently used in
a sampling, otherwise false.
isInSamplingMode in interface SamplingComponenttrue if the object is currently used in a sampling,
otherwise falsepublic boolean parseNextParameterSet()
SamplingComponent
parseNextParameterSet in interface SamplingComponenttrue if the parameters could be parsed, otherwise
falseSamplingComponent.parseParameterSet(int, int)
public boolean parseParameterSet(int start,
int n)
throws IOException
SamplingComponentn of a certain sampling (from a file). The
internal numbering should start with 0. The parameter set with index 0 is
the initial (random) parameter set. It is recommended that a series of
parameter sets is accessed by the following lines:
for( sampling = 0; sampling < numSampling; sampling++ )
{
while( b )
{
//do something
b = parseNextParameterSet();
}
parseParameterSet in interface SamplingComponentstart - the index of the samplingn - the index of the parameter set
true if the parameter set could be parsed
IOExceptionSamplingComponent.parseNextParameterSet()
public void samplingStopped()
throws IOException
SamplingComponentSamplingComponent.extendSampling(int, boolean). It can be
used for closing any streams of writer, ...
samplingStopped in interface SamplingComponentIOException - if something went wrongSamplingComponent.extendSampling(int, boolean)
protected void finalize()
throws Throwable
finalize in class ObjectThrowablepublic String getNodeShape(boolean forward)
Emission
getNodeShape in interface Emissionforward - if this emission is used on the forward strand
public String getNodeLabel(double weight,
String name,
NumberFormat nf)
Emission
getNodeLabel in interface Emissionweight - the weight of the node which is represented by
the color of the node, or -1 for no representation, i.e.,
white backgroundname - the name of the state using this emissionnf - the NumberFormat for formatting the textual representation of this emission
public void setLinear(boolean linear)
linear - map probabilities linear
public void fillSamplingGroups(int parameterOffset,
LinkedList<int[]> list)
DifferentiableEmissionint[], into list.
In most cases, one group should contain the parameters that are living on a common simplex.
The internal indexes of the parameters are incremeneted by an external parameterOffset
fillSamplingGroups in interface DifferentiableEmissionparameterOffset - the external parameter offsetlist - the list of sampling groupspublic int getNumberOfParameters()
DifferentiableEmission
getNumberOfParameters in interface DifferentiableEmissionpublic int getSizeOfEventSpace()
DifferentiableEmission
getSizeOfEventSpace in interface DifferentiableEmission
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||