|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use ParameterSetParser.NotInstantiableException | |
|---|---|
| de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifiers that are based on SequenceScores. |
| de.jstacs.data | Provides classes for the representation of data. |
| de.jstacs.io | Provides classes for reading data from and writing to a file and storing a number of datatypes, including all primitives, arrays of primitives, and Storables to an XML-representation |
| de.jstacs.parameters | This package provides classes for parameters that establish a general convention for the description of parameters
as defined in the Parameter-interface. |
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels | Provides DifferentiableStatisticalModels that are directed graphical models. |
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training | The package provides all classes used to determine the training algorithm of a hidden Markov model |
| Uses of ParameterSetParser.NotInstantiableException in de.jstacs.classifiers.differentiableSequenceScoreBased |
|---|
| Methods in de.jstacs.classifiers.differentiableSequenceScoreBased that throw ParameterSetParser.NotInstantiableException | |
|---|---|
AbstractTerminationCondition |
ScoreClassifierParameterSet.getTerminantionCondition()
This method returns the AbstractTerminationCondition for stopping the training, e.g., if the
difference of the scores between two iterations is smaller than a given
threshold the training is stopped. |
| Uses of ParameterSetParser.NotInstantiableException in de.jstacs.data |
|---|
| Constructors in de.jstacs.data that throw ParameterSetParser.NotInstantiableException | |
|---|---|
AlphabetContainer(AlphabetContainerParameterSet parameters)
Creates a new AlphabetContainer from an
AlphabetContainerParameterSet that contains all necessary
parameters. |
|
| Uses of ParameterSetParser.NotInstantiableException in de.jstacs.io |
|---|
| Methods in de.jstacs.io that throw ParameterSetParser.NotInstantiableException | ||
|---|---|---|
static
|
ParameterSetParser.getInstanceFromParameterSet(InstanceParameterSet<T> pars)
Returns an instance of a subclass of InstantiableFromParameterSet
that can be instantiated by the InstanceParameterSet
pars. |
|
static
|
ParameterSetParser.getInstanceFromParameterSet(ParameterSet pars,
Class<T> instanceClass)
Returns an instance of a subclass of InstantiableFromParameterSet
that can be instantiated by the ParameterSet pars. |
|
| Uses of ParameterSetParser.NotInstantiableException in de.jstacs.parameters |
|---|
| Methods in de.jstacs.parameters that throw ParameterSetParser.NotInstantiableException | |
|---|---|
T |
InstanceParameterSet.getInstance()
Returns a new instance of the class of InstanceParameterSet.getInstanceClass() that
was created using this ParameterSet. |
| Uses of ParameterSetParser.NotInstantiableException in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels that throw ParameterSetParser.NotInstantiableException | |
|---|---|
Measure |
BayesianNetworkDiffSMParameterSet.getMeasure()
Returns the structure Measure defined by this set of parameters. |
| Constructors in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels that throw ParameterSetParser.NotInstantiableException | |
|---|---|
BayesianNetworkDiffSM(BayesianNetworkDiffSMParameterSet parameters)
Creates a new BayesianNetworkDiffSM that has neither
been initialized nor trained from a
BayesianNetworkDiffSMParameterSet. |
|
| Uses of ParameterSetParser.NotInstantiableException in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training that throw ParameterSetParser.NotInstantiableException | |
|---|---|
AbstractBurnInTest |
SamplingHMMTrainingParameterSet.getBurnInTest()
This method return the burn in test to be used during sampling. |
AbstractTerminationCondition |
MaxHMMTrainingParameterSet.getTerminationCondition()
This method returns the AbstractTerminationCondition for stopping the training, e.g., if the
difference of the scores between two iterations is smaller than a given
threshold the training is stopped. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||