|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Uses of SamplingDifferentiableStatisticalModel in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
|---|
| Fields in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling declared as SamplingDifferentiableStatisticalModel | |
|---|---|
protected SamplingDifferentiableStatisticalModel[] |
SamplingScoreBasedClassifier.scoringFunctions
SamplingDifferentiableStatisticalModels |
| Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling with parameters of type SamplingDifferentiableStatisticalModel | |
|---|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
double[] beta,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta for the three components of the
LogGenDisMixFunction, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes. |
|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
|
SamplingScoreBasedClassifier(SamplingScoreBasedClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new SamplingScoreBasedClassifier using the parameters in params,
a specified BurnInTest (or null for no burn-in test), a set of sampling variances,
which may be different for each of the classes (in analogy to equivalent sample size for the Dirichlet distribution),
and set set of SamplingDifferentiableStatisticalModels for each of the classes. |
|
| Uses of SamplingDifferentiableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable that implement SamplingDifferentiableStatisticalModel | |
|---|---|
class |
CyclicMarkovModelDiffSM
This scoring function implements a cyclic Markov model of arbitrary order and periodicity for any sequence length. |
class |
UniformDiffSM
This DifferentiableStatisticalModel does nothing. |
| Uses of SamplingDifferentiableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels that implement SamplingDifferentiableStatisticalModel | |
|---|---|
class |
MarkovModelDiffSM
This class implements a AbstractDifferentiableStatisticalModel for an inhomogeneous Markov model. |
| Uses of SamplingDifferentiableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous that implement SamplingDifferentiableStatisticalModel | |
|---|---|
class |
HomogeneousDiffSM
This is the main class for all homogeneous DifferentiableSequenceScores. |
class |
HomogeneousMM0DiffSM
This scoring function implements a homogeneous Markov model of order zero (hMM(0)) for a fixed sequence length. |
class |
HomogeneousMMDiffSM
This scoring function implements a homogeneous Markov model of arbitrary order for any sequence length. |
class |
UniformHomogeneousDiffSM
This scoring function does nothing. |
| Uses of SamplingDifferentiableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture that implement SamplingDifferentiableStatisticalModel | |
|---|---|
class |
AbstractMixtureDiffSM
This main abstract class for any mixture scoring function (e.g. |
class |
MixtureDiffSM
This class implements a real mixture model. |
class |
StrandDiffSM
This class enables the user to search on both strand. |
class |
VariableLengthMixtureDiffSM
This class implements a mixture of VariableLengthDiffSM by extending MixtureDiffSM and implementing the methods of VariableLengthDiffSM. |
| Uses of SamplingDifferentiableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif that implement SamplingDifferentiableStatisticalModel | |
|---|---|
class |
ExtendedZOOPSDiffSM
This class handles mixtures with at least one hidden motif. |
| Uses of SamplingDifferentiableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models that implement SamplingDifferentiableStatisticalModel | |
|---|---|
class |
DifferentiableHigherOrderHMM
This class combines an HigherOrderHMM and a DifferentiableStatisticalModel by implementing some of the declared methods. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||