|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use AbstractMixtureTrainSM.Parameterization | |
|---|---|
| de.jstacs.sequenceScores.statisticalModels.trainable.mixture | This package is the super package for any mixture model. |
| de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif | |
| Uses of AbstractMixtureTrainSM.Parameterization in de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable.mixture that return AbstractMixtureTrainSM.Parameterization | |
|---|---|
static AbstractMixtureTrainSM.Parameterization |
AbstractMixtureTrainSM.Parameterization.valueOf(String name)
Returns the enum constant of this type with the specified name. |
static AbstractMixtureTrainSM.Parameterization[] |
AbstractMixtureTrainSM.Parameterization.values()
Returns an array containing the constants of this enum type, in the order they are declared. |
| Constructors in de.jstacs.sequenceScores.statisticalModels.trainable.mixture with parameters of type AbstractMixtureTrainSM.Parameterization | |
|---|---|
AbstractMixtureTrainSM(int length,
TrainableStatisticalModel[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new AbstractMixtureTrainSM. |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
double[] weights,
int starts,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new MixtureTrainSM. |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new StrandTrainSM. |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double forwardStrandProb,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
| Uses of AbstractMixtureTrainSM.Parameterization in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif |
|---|
| Constructors in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif with parameters of type AbstractMixtureTrainSM.Parameterization | |
|---|---|
HiddenMotifMixture(TrainableStatisticalModel[] models,
boolean[] optimzeArray,
int components,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new HiddenMotifMixture. |
|
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new ZOOPSTrainSM. |
|
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new ZOOPSTrainSM using EM and estimating
the probability for finding a motif. |
|
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double motifProb,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new ZOOPSTrainSM using EM and fixed
probability for finding a motif. |
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||