public class RepeatedHoldOutExperiment extends ClassifierAssessment<RepeatedHoldOutAssessParameterSet>
myAbstractClassifier, myModel, myTempMeanResultSets, skipLastClassifiersDuringClassifierTraining| Modifier | Constructor and Description |
|---|---|
|
RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a
RepeatedHoldOutExperiment. |
protected |
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new
RepeatedHoldOutExperiment from a set of
TrainableStatisticalModels. |
| Modifier and Type | Method and Description |
|---|---|
protected void |
evaluateClassifier(NumericalPerformanceMeasureParameterSet mp,
RepeatedHoldOutAssessParameterSet assessPS,
DataSet[] s,
double[][] weights,
ProgressUpdater pU)
Evaluates the classifier.
|
RepeatedHoldOutAssessParameterSet |
getAssessParameterSet()
This method returns an instance of
ClassifierAssessmentAssessParameterSet that can be used in the assess methods. |
assess, assess, assess, assess, getClassifier, getNameOfAssessment, prepareAssessment, test, trainprotected RepeatedHoldOutExperiment(AbstractClassifier[] aCs, TrainableStatisticalModel[][] aMs, boolean buildClassifiersByCrossProduct, boolean checkAlphabetConsistencyAndLength) throws IllegalArgumentException, WrongAlphabetException, CloneNotSupportedException, ClassDimensionException
RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. If
buildClassifiersByCrossProduct is true, the
cross-product of all TrainableStatisticalModels in aMs is built to
obtain these classifiers.aCs - the predefined classifiersaMs - the TrainableStatisticalModels that are used to build additional
classifiersbuildClassifiersByCrossProduct - Determines how classifiers are constructed using the given
models. Suppose a k-class problem. In this case, each
classifier is supposed to consist of k models, one responsible
for each class. S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.checkAlphabetConsistencyAndLength - indicates if alphabets and lengths shall be checked for
consistencyIllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if the classifiers use different alphabetsCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier[],
TrainableStatisticalModel[][], boolean, boolean)public RepeatedHoldOutExperiment(AbstractClassifier... aCs) throws IllegalArgumentException, WrongAlphabetException, CloneNotSupportedException, ClassDimensionException
RepeatedHoldOutExperiment from a set of
AbstractClassifiers.aCs - contains the classifiers to be assessed.assess( ... ).s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainerCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier...)public RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
throws IllegalArgumentException,
WrongAlphabetException,
CloneNotSupportedException,
ClassDimensionException
RepeatedHoldOutExperiment from a set of
TrainableStatisticalModels. The argument buildClassifiersByCrossProduct
determines how these TrainableStatisticalModels are combined to classifiers.buildClassifiersByCrossProduct - S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.aMs - aMs[i]) contains the
models according to class i.s... . s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainerCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(boolean, TrainableStatisticalModel[][])public RepeatedHoldOutExperiment(AbstractClassifier[] aCs, boolean buildClassifiersByCrossProduct, TrainableStatisticalModel[]... aMs) throws IllegalArgumentException, WrongAlphabetException, CloneNotSupportedException, ClassDimensionException
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a
RepeatedHoldOutExperiment.aCs - contains some AbstractClassifier that should be
assessed in addition to the AbstractClassifiers
constructed using the given
TrainableStatisticalModelsbuildClassifiersByCrossProduct - S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.aMs - aMs[i]) contains the
models according to class i.s... . s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainerCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier[],
boolean, TrainableStatisticalModel[][])protected void evaluateClassifier(NumericalPerformanceMeasureParameterSet mp, RepeatedHoldOutAssessParameterSet assessPS, DataSet[] s, double[][] weights, ProgressUpdater pU) throws IllegalArgumentException, Exception
evaluateClassifier in class ClassifierAssessment<RepeatedHoldOutAssessParameterSet>mp - defines which performance measures are used to assess
classifierspU - A KFoldCrossValidation is not allowed to be aborted.
The given ProgressUpdater is never used in this
method.s - contains the data to be used for assessment. The order of the
data sets is important. s. If
the models are trained directly, the order of given models
during initiation of this assessment object determines, which
data set will be used for training which model. In general the
first model will be trained using the first data set in
s... . s in order (s[0]
contains foreground data, s[1] contains
background data)
assessPS - contains parameters for a run of this
RepeatedHoldOutExperiment. Must be of type
RepeatedHoldOutAssessParameterSet.weights - the (non-negative) weights for the data;
weight for each data set (first dimension) and each sequence (second dimension),
can be null which is the same as weight 1 for all sequences in all data setsIllegalArgumentException - if the given assessPS is not of type
RepeatedHoldOutAssessParameterSetException - if something went wrongpublic RepeatedHoldOutAssessParameterSet getAssessParameterSet() throws Exception
ClassifierAssessmentClassifierAssessmentAssessParameterSet that can be used in the assess methods.getAssessParameterSet in class ClassifierAssessment<RepeatedHoldOutAssessParameterSet>ClassifierAssessmentAssessParameterSet that can be used in the assess methods.Exception - if the parameter set could not be created properlyClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, DataSet...),
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, ProgressUpdater, DataSet[]),
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, ProgressUpdater, DataSet[], double[][])