public abstract class AbstractOptimizableFunction extends OptimizableFunction
OptimizableFunction and implements some common
methods.OptimizableFunction.KindOfParameter| Modifier and Type | Field and Description |
|---|---|
protected int |
cl
The number of different classes.
|
protected double[] |
clazz
The class parameters.
|
protected DataSet[] |
data
The data that is used to evaluate this function.
|
protected boolean |
freeParams
Indicates whether only the free parameters or all should be used.
|
protected double[] |
logClazz
The logarithm of the class parameters.
|
protected boolean |
norm
Indicates whether a normalization should be done or not.
|
protected double[] |
sum
The sums of the weighted data per class and additional the total weight
sum.
|
protected double[][] |
weights
The weights for the data.
|
| Modifier | Constructor and Description |
|---|---|
protected |
AbstractOptimizableFunction(DataSet[] data,
double[][] weights,
boolean norm,
boolean freeParams)
The constructor creates an instance using the given weighted data.
|
| Modifier and Type | Method and Description |
|---|---|
DataSet[] |
getData()
Returns the data for each class used in this
OptimizableFunction. |
double[] |
getParameters(OptimizableFunction.KindOfParameter kind)
Returns some parameters that can be used for instance as start
parameters.
|
abstract void |
getParameters(OptimizableFunction.KindOfParameter kind,
double[] erg)
This method enables the user to get the parameters without creating a new
array.
|
double[][] |
getSequenceWeights()
Returns the weights for each
Sequence for each
class used in this OptimizableFunction. |
void |
setDataAndWeights(DataSet[] data,
double[][] weights)
This method sets the data set and the sequence weights to be used.
|
reset, setParamsevaluateGradientOfFunction, findOneDimensionalMinclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitevaluateFunction, getDimensionOfScopeprotected DataSet[] data
protected double[][] weights
dataprotected double[] clazz
protected double[] logClazz
clazzprotected double[] sum
protected int cl
protected boolean norm
protected boolean freeParams
protected AbstractOptimizableFunction(DataSet[] data, double[][] weights, boolean norm, boolean freeParams) throws IllegalArgumentException
data - the dataweights - the weightsnorm - the switch for using the normalization (division by the number
of sequences)freeParams - the switch for using only the free parametersIllegalArgumentException - if the number of classes or the dimension of the weights is not correctpublic void setDataAndWeights(DataSet[] data, double[][] weights) throws IllegalArgumentException
OptimizableFunctionsetDataAndWeights in class OptimizableFunctiondata - the data setsweights - the sequence weights for each sequence in each data setIllegalArgumentException - if the data or the weights can not be usedpublic abstract void getParameters(OptimizableFunction.KindOfParameter kind, double[] erg) throws Exception
kind - the kind of the class parameters to be returned in
ergerg - the array for the start parametersException - if the array is null or does not have the
correct lengthOptimizableFunction.getParameters(KindOfParameter)public final double[] getParameters(OptimizableFunction.KindOfParameter kind) throws Exception
OptimizableFunctiongetParameters in class OptimizableFunctionkind - the kind of the class parameters that will be returnedException - if something went wrongpublic DataSet[] getData()
OptimizableFunctionOptimizableFunction.getData in class OptimizableFunctionOptimizableFunction.getSequenceWeights()public double[][] getSequenceWeights()
OptimizableFunctionSequence for each
class used in this OptimizableFunction.getSequenceWeights in class OptimizableFunctionSequence and each
classOptimizableFunction.getData()