| Package | Description |
|---|---|
| de.jstacs.classifiers.differentiableSequenceScoreBased |
Provides the classes for
Classifiers that are based on SequenceScores.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels by
a unified generative-discriminative learning principle. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior |
Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors.
|
| de.jstacs.classifiers.differentiableSequenceScoreBased.msp |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL). |
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| de.jstacs.sequenceScores.statisticalModels.trainable |
Provides all
TrainableStatisticalModels, which can
be learned from a single DataSet. |
| Modifier and Type | Field and Description |
|---|---|
protected LogPrior |
DiffSSBasedOptimizableFunction.prior
The prior that is used in this function.
|
| Constructor and Description |
|---|
DiffSSBasedOptimizableFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
boolean norm,
boolean freeParams)
Creates an instance with the underlying infrastructure.
|
| Modifier and Type | Field and Description |
|---|---|
protected LogPrior |
GenDisMixClassifier.prior
The prior that is used in this classifier.
|
| Modifier and Type | Method and Description |
|---|---|
static GenDisMixClassifier[] |
GenDisMixClassifier.create(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] weights,
DifferentiableStatisticalModel[]... functions)
This method creates an array of GenDisMixClassifiers by using the cross-product of the given
DifferentiableStatisticalModels. |
void |
GenDisMixClassifier.setPrior(LogPrior prior)
This method set a new prior that should be used for optimization.
|
| Constructor and Description |
|---|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] beta,
DifferentiableStatisticalModel... score)
The main constructor.
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
DifferentiableSequenceScore... score)
This constructor creates an instance and sets the value of the last (external) optimization.
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
DifferentiableStatisticalModel... score)
This constructor creates an instance and sets the value of the last (external) optimization.
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double genBeta,
double disBeta,
double priorBeta,
DifferentiableStatisticalModel... score)
This convenience constructor agglomerates the
genBeta, disBeta, and priorBeta into an array and calls the main constructor. |
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
LearningPrinciple key,
DifferentiableStatisticalModel... score)
This convenience constructor creates an array of weights for an elementary learning principle and calls the main constructor.
|
LogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an
Optimizer. |
OneDataSetLogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an
Optimizer. |
| Modifier and Type | Class and Description |
|---|---|
class |
CompositeLogPrior
This class implements a composite prior that can be used for DifferentiableStatisticalModel.
|
class |
DoesNothingLogPrior
This class defines a
LogPrior that does not penalize any parameter. |
class |
SeparateGaussianLogPrior
Class for a
LogPrior that defines a Gaussian prior on the parameters
of a set of DifferentiableStatisticalModels
and a set of class parameters. |
class |
SeparateLaplaceLogPrior
Class for a
LogPrior that defines a Laplace prior on the parameters
of a set of DifferentiableStatisticalModels
and a set of class parameters. |
class |
SeparateLogPrior
Abstract class for priors that penalize each parameter value independently
and have some variances (and possible means) as hyperparameters.
|
class |
SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions
with mean 0 and equal variance for each parameter.
|
| Modifier and Type | Method and Description |
|---|---|
abstract LogPrior |
LogPrior.getNewInstance()
This method returns an empty new instance of the current prior.
|
LogPrior |
DoesNothingLogPrior.getNewInstance() |
| Constructor and Description |
|---|
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
DifferentiableSequenceScore... score)
The default constructor that creates a new
MSPClassifier from a
given parameter set, a prior and DifferentiableSequenceScores for the
classes. |
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
DifferentiableSequenceScore... score)
This constructor that creates a new
MSPClassifier from a
given parameter set, a prior and DifferentiableSequenceScores for the
classes. |
| Constructor and Description |
|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
double[] beta,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new
SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta for the three components of the
LogGenDisMixFunction, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes. |
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new
SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
| Constructor and Description |
|---|
DifferentiableStatisticalModelWrapperTrainSM(DifferentiableStatisticalModel nsf,
int threads,
byte algo,
AbstractTerminationCondition tc,
double lineps,
double startD,
LogPrior prior)
Constructor that creates an instance with the user given parameters.
|