public class HomogeneousMM0DiffSM extends HomogeneousDiffSM
alphabets, length, rUNKNOWN| Constructor and Description |
|---|
HomogeneousMM0DiffSM(AlphabetContainer alphabets,
int length,
double ess,
boolean plugIn,
boolean optimize)
The main constructor that creates an instance of a homogeneous Markov
model of order 0.
|
HomogeneousMM0DiffSM(StringBuffer xml)
This is the constructor for
Storable. |
| Modifier and Type | Method and Description |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
HomogeneousMM0DiffSM |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogNormalizationConstant(int length)
This method returns the logarithm of the normalization constant for a given sequence
length.
|
double |
getLogPartialNormalizationConstant(int parameterIndex,
int length)
This method returns the logarithm of the partial normalization constant for a given
parameter index and a sequence length.
|
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
int end,
IntList indices,
DoubleList dList)
|
double |
getLogScoreFor(Sequence seq,
int start,
int end)
|
byte |
getMaximalMarkovOrder()
Returns the maximal used markov oder.
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore. |
int[][] |
getSamplingGroups(int parameterOffset)
Returns groups of indexes of parameters that shall be drawn
together in a sampling procedure
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
void |
initializeUniformly(boolean freeParams)
This method allows to initialize the instance with an uniform distribution.
|
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
void |
setStatisticForHyperparameters(int[] length,
double[] weight)
This method sets the hyperparameters for the model parameters by
evaluating the given statistic.
|
String |
toString(NumberFormat nf)
This method returns a
String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
getLogNormalizationConstant, getLogPartialNormalizationConstant, getLogScoreAndPartialDerivation, getLogScoreForemitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, isNormalized, isNormalizedgetAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreFor, getNumberOfRecommendedStarts, getNumberOfStarts, getNumericalCharacteristics, toStringequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetLogNormalizationConstant, getLogPartialNormalizationConstant, isNormalizedgetInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfRecommendedStartsemitDataSet, getLogProbFor, getLogProbFor, getLogProbForgetAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristicspublic HomogeneousMM0DiffSM(AlphabetContainer alphabets, int length, double ess, boolean plugIn, boolean optimize)
alphabets - the AlphabetContainer of the modellength - the length of sequences the model can handleess - the equivalent sample size (ess)plugIn - indicates if a plug-in strategy to initialize the parameters
should be usedoptimize - indicates if the parameters should be optimized or not after
they have been initializedpublic HomogeneousMM0DiffSM(StringBuffer xml) throws NonParsableException
Storable. Creates a new
HomogeneousMM0DiffSM out of its XML representation as returned by
fromXML(StringBuffer).xml - the XML representation as StringBufferNonParsableException - if the StringBuffer representation could
not be parsedpublic HomogeneousMM0DiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScoreDifferentiableSequenceScore
instance.clone in interface DifferentiableSequenceScoreclone in interface SequenceScoreclone in class AbstractDifferentiableStatisticalModelDifferentiableSequenceScoreCloneNotSupportedException - if something went wrong while cloning the
DifferentiableSequenceScorepublic String getInstanceName()
SequenceScorepublic double getLogScoreFor(Sequence seq, int start, int end)
SequenceScoregetLogScoreFor in interface SequenceScoregetLogScoreFor in interface VariableLengthDiffSMgetLogScoreFor in class AbstractVariableLengthDiffSMseq - the Sequencestart - the start position in the Sequenceend - the end position (inclusive) in the SequenceSequencepublic double getLogScoreAndPartialDerivation(Sequence seq, int start, int end, IntList indices, DoubleList dList)
DifferentiableSequenceScoreSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.getLogScoreAndPartialDerivation in interface DifferentiableSequenceScoregetLogScoreAndPartialDerivation in interface VariableLengthDiffSMgetLogScoreAndPartialDerivation in class AbstractVariableLengthDiffSMseq - the Sequencestart - the start position in the Sequenceend - the end position (inclusive) in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zerodList - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zeroSequencepublic int getNumberOfParameters()
DifferentiableSequenceScoreDifferentiableSequenceScore. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN.DifferentiableSequenceScoreDifferentiableSequenceScore.UNKNOWNpublic void setParameters(double[] params,
int start)
DifferentiableSequenceScoreparams between start and
start + DifferentiableSequenceScore.getNumberOfParameters() - 1params - the new parametersstart - the start index in paramspublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.public double[] getCurrentParameterValues()
DifferentiableSequenceScoredouble array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.public void initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
DifferentiableSequenceScoreDifferentiableSequenceScore.index - the index of the class the DifferentiableSequenceScore modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the data setsweights - the weights of the sequences in the data setspublic void initializeFunctionRandomly(boolean freeParams)
DifferentiableSequenceScoreDifferentiableSequenceScore randomly. It has to
create the underlying structure of the DifferentiableSequenceScore.freeParams - indicates whether the (reduced) parameterization is usedprotected void fromXML(StringBuffer xml) throws NonParsableException
AbstractDifferentiableSequenceScoreStorable
interface to create a scoring function from a StringBuffer.fromXML in class AbstractDifferentiableSequenceScorexml - the XML representation as StringBufferNonParsableException - if the StringBuffer could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModelindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...index - the index of the parameterpublic double getLogNormalizationConstant(int length)
VariableLengthDiffSMlength - the sequence lengthDifferentiableStatisticalModel.getLogNormalizationConstant()public double getLogPartialNormalizationConstant(int parameterIndex,
int length)
throws Exception
VariableLengthDiffSMparameterIndex - the index of the parameterlength - the sequence lengthException - if something went wrongDifferentiableStatisticalModel.getLogPartialNormalizationConstant(int)public double getESS()
DifferentiableStatisticalModelpublic String toString(NumberFormat nf)
SequenceScoreString representation of the instance.nf - the NumberFormat for the String representation of parameters or probabilitiesString representation of the instancepublic double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior ).DifferentiableStatisticalModel.getESS(),
DifferentiableStatisticalModel.getLogNormalizationConstant()public void addGradientOfLogPriorTerm(double[] grad,
int start)
DifferentiableStatisticalModelDifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.grad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredDifferentiableStatisticalModel.getLogPriorTerm()public boolean isInitialized()
SequenceScoreSequenceScore.getLogScoreFor(Sequence).true if the instance is initialized, false
otherwisepublic byte getMaximalMarkovOrder()
HomogeneousDiffSMgetMaximalMarkovOrder in interface StatisticalModelgetMaximalMarkovOrder in class HomogeneousDiffSMpublic void setStatisticForHyperparameters(int[] length,
double[] weight)
throws Exception
VariableLengthDiffSMlength) and how often (
weight) they have been seen.public void initializeUniformly(boolean freeParams)
HomogeneousDiffSMinitializeUniformly in class HomogeneousDiffSMfreeParams - a switch whether to take only free parameters or to take allpublic int[][] getSamplingGroups(int parameterOffset)
SamplingDifferentiableStatisticalModelparameterOffset - a global offset on the parameter indexesparameterOffset.