public class SkewNormalLikeDurationDiffSM extends DurationDiffSM
delta, ess, max, mininternalalphabets, length, rUNKNOWN| Constructor and Description |
|---|
SkewNormalLikeDurationDiffSM(int min,
int max,
boolean trainMean,
double hyperMeanMean,
double hyperMeanSigma,
boolean trainPrecision,
double hyperPrec1,
double hyperPrec2,
boolean trainSkew,
double hyperSkewMean,
double hyperSkewStdev,
int starts)
This is the constructor that allows the most flexible handling of the parameters.
|
SkewNormalLikeDurationDiffSM(int min,
int max,
double param0,
double param1,
double param2)
This is the main constructor if the parameters are fixed.
|
SkewNormalLikeDurationDiffSM(StringBuffer source)
This is the constructor for
Storable. |
| Modifier and Type | Method and Description |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
void |
adjust(int[] length,
double[] weight)
This method adjust the parameter based on the given statistic.
|
SkewNormalLikeDurationDiffSM |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
protected void |
fromXML(StringBuffer rep)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScore(int... values)
This method enables the user to get the log-score without using a sequence object.
|
double |
getLogScoreAndPartialDerivation(IntList indices,
DoubleList partialDer,
int... values)
This method enables the user to get the log-score and the partial derivations without using a sequence object.
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore. |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts.
|
protected String |
getRNotation(String distributionName,
NumberFormat nf)
This method returns the distribution in R notation.
|
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
void |
initializeUniformly()
This method set special parameters that lead to an uniform distribution.
|
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized
to 1 or not.
|
void |
modify(int delta)
This method modifies the underlying
AlphabetContainer. |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
void |
setParameters(double par0,
double par1,
double par2)
this method can be used to set the parameters even if the parameters are not allowed to be optimized.
|
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
getESS, getLogNormalizationConstant, getLogPartialNormalizationConstant, getMax, getMin, getNumberOfPossibilities, getSizeOfEventSpaceForRandomVariablesOfParameter, isPossible, next, reset, toStringgetInternalPosition, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivationForInternal, getLogScoreFor, getLogScoreForInternal, getValuesFromSequenceemitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalizedgetAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfStarts, getNumericalCharacteristics, toStringequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetLogScoreAndPartialDerivation, getLogScoreAndPartialDerivationgetAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getNumericalCharacteristicspublic SkewNormalLikeDurationDiffSM(int min,
int max,
double param0,
double param1,
double param2)
min - the minimal valuemax - the maximal valueparam0 - the fixed parameter value for the first parameter (mean)param1 - the fixed parameter value for the second parameter (precision)param2 - the fixed parameter value for the third parameter (skew)public SkewNormalLikeDurationDiffSM(int min,
int max,
boolean trainMean,
double hyperMeanMean,
double hyperMeanSigma,
boolean trainPrecision,
double hyperPrec1,
double hyperPrec2,
boolean trainSkew,
double hyperSkewMean,
double hyperSkewStdev,
int starts)
min - the minimal valuemax - the maximal valuetrainMean - a switch whether to optimize the first parameterhyperMeanMean - the mean hyper parameter for the first parameterhyperMeanSigma - the standard deviation hyper parameter for the first parametertrainPrecision - a switch whether to optimize the second parameterhyperPrec1 - the first hyper parameter for the precision (first parameter of the transformed gamma density);
this is value is used to determine the ess: hyperPrec1 = 0.5*esshyperPrec2 - the second hyper parameter for the precision (second parameter of the transformed gamma density)trainSkew - a switch whether to optimize the third parameterhyperSkewMean - the mean hyper parameter for the third parameterhyperSkewStdev - the standard deviation hyper parameter for the third parameterstarts - the number of recommended startspublic SkewNormalLikeDurationDiffSM(StringBuffer source) throws NonParsableException
Storable. Creates a new
SkewNormalLikeDurationDiffSM out of a StringBuffer.source - the XML representation as StringBufferNonParsableException - if the XML representation could not be parsedpublic SkewNormalLikeDurationDiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScoreDifferentiableSequenceScore
instance.clone in interface DifferentiableSequenceScoreclone in interface SequenceScoreclone in class PositionDiffSMDifferentiableSequenceScoreCloneNotSupportedException - if something went wrong while cloning the
DifferentiableSequenceScorepublic void initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore.index - the index of the class the DifferentiableSequenceScore modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the data setsweights - the weights of the sequences in the data setsException - if something went wrongpublic void adjust(int[] length,
double[] weight)
DurationDiffSMadjust in class DurationDiffSMlength - an array containing length valuesweight - an array containing corresponding weight valuespublic void initializeFunctionRandomly(boolean freeParams)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore randomly. It has to
create the underlying structure of the DifferentiableSequenceScore.freeParams - indicates whether the (reduced) parameterization is usedException - if something went wrongprotected void fromXML(StringBuffer rep) throws NonParsableException
AbstractDifferentiableSequenceScoreStorable
interface to create a scoring function from a StringBuffer.fromXML in class DurationDiffSMrep - the XML representation as StringBufferNonParsableException - if the StringBuffer could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)public String getInstanceName()
SequenceScorepublic double[] getCurrentParameterValues()
throws Exception
DifferentiableSequenceScoredouble array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.Exception - if no parameters exist (yet)public double getLogScore(int... values)
PositionDiffSMgetLogScore in class PositionDiffSMvalues - the valuespublic double getLogScoreAndPartialDerivation(IntList indices, DoubleList partialDer, int... values)
PositionDiffSMgetLogScoreAndPartialDerivation in class PositionDiffSMindices - a list for the indices of the parameterspartialDer - a list of the partial derivationsvalues - the valuespublic int getNumberOfParameters()
DifferentiableSequenceScoreDifferentiableSequenceScore. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN.DifferentiableSequenceScoreDifferentiableSequenceScore.UNKNOWNpublic void setParameters(double[] params,
int start)
DifferentiableSequenceScoreparams between start and
start + DifferentiableSequenceScore.getNumberOfParameters() - 1params - the new parametersstart - the start index in paramspublic void setParameters(double par0,
double par1,
double par2)
par0 - the first parameter (for the mean or maximum)par1 - the second parameter (for the precision)par2 - the third parameter (for the skew)public StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.toXML in interface StorabletoXML in class DurationDiffSMprotected String getRNotation(String distributionName, NumberFormat nf)
DurationDiffSMgetRNotation in class DurationDiffSMdistributionName - the name of the distribution, e.g., "p"nf - the NumberFormat to be used, can be nullREnvironmentpublic double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior ).DifferentiableStatisticalModel.getESS(),
DifferentiableStatisticalModel.getLogNormalizationConstant()public void addGradientOfLogPriorTerm(double[] grad,
int start)
throws Exception
DifferentiableStatisticalModelDifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.grad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredException - if something went wrong with the computing of the gradientsDifferentiableStatisticalModel.getLogPriorTerm()public boolean isInitialized()
SequenceScoreSequenceScore.getLogScoreFor(Sequence).true if the instance is initialized, false
otherwisepublic boolean isNormalized()
DifferentiableStatisticalModelfalse.isNormalized in interface DifferentiableStatisticalModelisNormalized in class AbstractDifferentiableStatisticalModeltrue if the implemented score is already normalized
to 1, false otherwisepublic void initializeUniformly()
DurationDiffSMinitializeUniformly in class DurationDiffSMpublic void modify(int delta)
DurationDiffSMAlphabetContainer. This might be necessary if the motif length changed.modify in class DurationDiffSMdelta - the changeMutable.modify(int, int),
MutableMotifDiscoverer.modifyMotif(int, int, int)public int getNumberOfRecommendedStarts()
DifferentiableSequenceScoregetNumberOfRecommendedStarts in interface DifferentiableSequenceScoregetNumberOfRecommendedStarts in class AbstractDifferentiableSequenceScore