| Package | Description |
|---|---|
| de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
This package is the super package for any mixture model.
|
| de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif |
| Modifier and Type | Method and Description |
|---|---|
static AbstractMixtureTrainSM.Parameterization |
AbstractMixtureTrainSM.Parameterization.valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static AbstractMixtureTrainSM.Parameterization[] |
AbstractMixtureTrainSM.Parameterization.values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
| Constructor and Description |
|---|
AbstractMixtureTrainSM(int length,
TrainableStatisticalModel[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
AbstractMixtureTrainSM. |
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
double[] weights,
int starts,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities.
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
MixtureTrainSM. |
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
StrandTrainSM. |
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double forwardStrandProb,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities.
|
| Constructor and Description |
|---|
HiddenMotifMixture(TrainableStatisticalModel[] models,
boolean[] optimzeArray,
int components,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
HiddenMotifMixture. |
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
ZOOPSTrainSM. |
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new
ZOOPSTrainSM using EM and estimating
the probability for finding a motif. |
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double motifProb,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new
ZOOPSTrainSM using EM and fixed
probability for finding a motif. |