public class StatisticalTest extends Object
Y_{\epsilon}(p,q) = \frac{\left[\sum_{i,j} p_{i,j} \cdot \left(\frac{p_{i,j}}{q_{i,j}}\right)^{\epsilon-1}\right] - 1}{\frac{\epsilon(\epsilon-1)}{2}}
| Constructor and Description |
|---|
StatisticalTest() |
| Modifier and Type | Method and Description |
|---|---|
static double |
getGeneralizedDivergence(double[][] p,
double epsilon)
Computes the generalized divergence for two stochastic matrices over the
same domain, i.e.
|
static double |
getGeneralizedDivergence(double[][] p,
double[][] q,
double epsilon)
Computes the generalized divergence for two given stochastic matrices
over the same domain, i.e.
|
static double |
getGeneralizedDivergence(double[][] p,
double[] r,
double[] s,
double epsilon)
Computes the generalized divergence for two stochastic matrices over the
same domain, i.e.
|
public static double getGeneralizedDivergence(double[][] p,
double[][] q,
double epsilon)
throws IllegalArgumentException
epsilon=1 this method returns 2*(mutual information).p - one stochastic matrixq - another stochastic matrixepsilon - the positive divergence parameterIllegalArgumentException - if some arguments are not correctpublic static double getGeneralizedDivergence(double[][] p,
double[] r,
double[] s,
double epsilon)
epsilon=1 this method returns 2*(mutual information).p - a stochastic matrixr - one stochastic vectors - another stochastic vectorepsilon - the divergence parameterpublic static double getGeneralizedDivergence(double[][] p,
double epsilon)
epsilon=1 this method returns 2*(mutual information).p - a stochastic matrixepsilon - the divergence parameter