public class Sampled_RepeatedHoldOutExperiment extends ClassifierAssessment<Sampled_RepeatedHoldOutAssessParameterSet>
ClassifierAssessment that partitions the data
of a user-specified reference class (typically the smallest class) and
data sets non-overlapping for all other classes, so that one gets the same
number of sequences (and the same lengths of the sequences) in each train and
test data set.Sampled_RepeatedHoldOutAssessParameterSetmyAbstractClassifier, myModel, myTempMeanResultSets, skipLastClassifiersDuringClassifierTraining| Modifier | Constructor and Description |
|---|---|
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a
Sampled_RepeatedHoldOutExperiment. |
protected |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new
Sampled_RepeatedHoldOutExperiment from a set of
TrainableStatisticalModels. |
| Modifier and Type | Method and Description |
|---|---|
protected void |
evaluateClassifier(NumericalPerformanceMeasureParameterSet mp,
Sampled_RepeatedHoldOutAssessParameterSet assessPS,
DataSet[] s,
double[][] weights,
ProgressUpdater pU)
This method must be implemented in all subclasses.
|
Sampled_RepeatedHoldOutAssessParameterSet |
getAssessParameterSet()
This method returns an instance of
ClassifierAssessmentAssessParameterSet that can be used in the assess methods. |
assess, assess, assess, assess, getClassifier, getNameOfAssessment, prepareAssessment, test, trainprotected Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs, TrainableStatisticalModel[][] aMs, boolean buildClassifiersByCrossProduct, boolean checkAlphabetConsistencyAndLength) throws IllegalArgumentException, WrongAlphabetException, CloneNotSupportedException, ClassDimensionException
Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. If
buildClassifiersByCrossProduct is true, the
cross-product of all TrainableStatisticalModels in aMs is built to
obtain these classifiers.aCs - the predefined classifiersaMs - the TrainableStatisticalModels that are used to build additional
classifiersbuildClassifiersByCrossProduct - Determines how classifiers are constructed using the given
models. Suppose a k-class problem. In this case, each
classifier is supposed to consist of k models, one responsible
for each class. S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.checkAlphabetConsistencyAndLength - indicates if alphabets and lengths shall be checked for
consistencyIllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if the classifiers use different alphabetsCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier[],
TrainableStatisticalModel[][], boolean, boolean)public Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs) throws IllegalArgumentException, WrongAlphabetException, CloneNotSupportedException, ClassDimensionException
Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifiers.aCs - contains the classifiers to be assessed,assess( ... ).s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainerCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier...)public Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
throws IllegalArgumentException,
WrongAlphabetException,
CloneNotSupportedException,
ClassDimensionException
Sampled_RepeatedHoldOutExperiment from a set of
TrainableStatisticalModels. The argument buildClassifiersByCrossProduct
determines how these TrainableStatisticalModels are combined to classifiers.buildClassifiersByCrossProduct - S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.aMs - aMs[i]) contains the
models according to class i.s... . s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainerCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(boolean, TrainableStatisticalModel[][])public Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs, boolean buildClassifiersByCrossProduct, TrainableStatisticalModel[]... aMs) throws IllegalArgumentException, WrongAlphabetException, CloneNotSupportedException, ClassDimensionException
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a
Sampled_RepeatedHoldOutExperiment. aCs - contains some AbstractClassifier that should be
assessed in addition to the AbstractClassifiers
constructed using the given
TrainableStatisticalModelsbuildClassifiersByCrossProduct - S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.aMs - aMs[i]) contains the
models according to class i.s... . s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengthsWrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainerCloneNotSupportedException - if something went wrong while cloningClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier[],
boolean, TrainableStatisticalModel[][])protected void evaluateClassifier(NumericalPerformanceMeasureParameterSet mp, Sampled_RepeatedHoldOutAssessParameterSet assessPS, DataSet[] s, double[][] weights, ProgressUpdater pU) throws IllegalArgumentException, Exception
ClassifierAssessmenttrain() to train classifiers/models using
train data test() to cause evaluation (test) of trained
classifiersevaluateClassifier in class ClassifierAssessment<Sampled_RepeatedHoldOutAssessParameterSet>mp - defines which performance measures are used to assess
classifiersassessPS - contains assessment specific parameters (like: number of
iterations of a k-fold-crossvalidation)s - data to be used for assessment (both: test and train data)weights - the (non-negative) weights for the data;
weight for each data set (first dimension) and each sequence (second dimension),
can be null which is the same as weight 1 for all sequences in all data setspU - a ProgressUpdater that mainly has to be used to allow
the user to cancel a current running classifier assessment.
This ProgressUpdater is guaranteed to be not
null. In certain cases aborting a classifier
assessment will not be allowed for example in case of
KFoldCrossValidation. In this case the given
ProgressUpdater should be ignored. pU.setMax()= number of iterations of the assessment loop
pU.setValue()=iteration+1;
train();
test();
pU.isCancelled()))
IllegalArgumentException - if the given ClassifierAssessmentAssessParameterSet
is of wrong typeException - that occurred during training or using classifiers/modelspublic Sampled_RepeatedHoldOutAssessParameterSet getAssessParameterSet() throws Exception
ClassifierAssessmentClassifierAssessmentAssessParameterSet that can be used in the assess methods.getAssessParameterSet in class ClassifierAssessment<Sampled_RepeatedHoldOutAssessParameterSet>ClassifierAssessmentAssessParameterSet that can be used in the assess methods.Exception - if the parameter set could not be created properlyClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, DataSet...),
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, ProgressUpdater, DataSet[]),
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, ProgressUpdater, DataSet[], double[][])