public final class NormalizedDiffSM extends AbstractDifferentiableStatisticalModel implements Mutable
DifferentiableStatisticalModel to a normalized DifferentiableStatisticalModel.
However, the class allows to use only DifferentiableStatisticalModel that do not implement VariableLengthDiffSM.
This class should be used only in cases when it is not possible to avoid its usage.alphabets, length, rUNKNOWN| Constructor and Description |
|---|
NormalizedDiffSM(DifferentiableStatisticalModel nsf,
int starts)
Creates a new instance using a given DifferentiableStatisticalModel.
|
NormalizedDiffSM(StringBuffer xml)
This is the constructor for
Storable. |
| Modifier and Type | Method and Description |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
NormalizedDiffSM |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
DifferentiableStatisticalModel |
getFunction()
This method returns the internal function.
|
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space.
|
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
|
double |
getLogScoreFor(Sequence seq,
int start)
|
static DifferentiableStatisticalModel |
getNormalizedVersion(DifferentiableStatisticalModel nsf,
int starts)
This method returns a normalized version of a DifferentiableStatisticalModel.
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore. |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts.
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
StrandedLocatedSequenceAnnotationWithLength.Strand |
getStrand(Sequence seq,
int startPos)
This method return the preferred
StrandedLocatedSequenceAnnotationWithLength.Strand for a Sequence beginning at startPos. |
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
void |
initializeHiddenUniformly()
This method initializes the hidden parameters of the internal
DifferentiableStatisticalModel uniformly if it is a AbstractMixtureDiffSM. |
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized
to 1 or not.
|
boolean |
isStrandModel()
This method returns
true if the internal DifferentiableStatisticalModel is a StrandDiffSM otherwise false. |
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model.
|
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
String |
toString(NumberFormat nf)
This method returns a
String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
emitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalizedgetAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfStarts, getNumericalCharacteristics, toStringequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetLogScoreAndPartialDerivation, getLogScoreAndPartialDerivationgetAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getNumericalCharacteristicspublic NormalizedDiffSM(DifferentiableStatisticalModel nsf, int starts) throws Exception
nsf - the function to be used internalstarts - the number of recommended starts (DifferentiableSequenceScore.getNumberOfRecommendedStarts())Exception - is nsf could not be cloned or some error occurred during computation of some valuespublic NormalizedDiffSM(StringBuffer xml) throws NonParsableException
Storable.xml - the xml representationNonParsableException - if the representation could not be parsed.public static final DifferentiableStatisticalModel getNormalizedVersion(DifferentiableStatisticalModel nsf, int starts) throws Exception
nsf or an instance of NormalizedDiffSM using nsf and starts.nsf - the DifferentiableStatisticalModel to be normalizedstarts - the number of recommended starts for a NormalizedDiffSMException - if nsf could not be clonedpublic NormalizedDiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScoreDifferentiableSequenceScore
instance.clone in interface DifferentiableSequenceScoreclone in interface SequenceScoreclone in class AbstractDifferentiableStatisticalModelDifferentiableSequenceScoreCloneNotSupportedException - if something went wrong while cloning the
DifferentiableSequenceScorepublic int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModelindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...getSizeOfEventSpaceForRandomVariablesOfParameter in interface DifferentiableStatisticalModelindex - the index of the parameterpublic double getLogNormalizationConstant()
DifferentiableStatisticalModelgetLogNormalizationConstant in interface DifferentiableStatisticalModelpublic double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
DifferentiableStatisticalModelparameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/DifferentiableStatisticalModel_LaTeXilb10_1.png)
getLogPartialNormalizationConstant in interface DifferentiableStatisticalModelparameterIndex - the index of the parameterException - if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()public double getESS()
DifferentiableStatisticalModelgetESS in interface DifferentiableStatisticalModelpublic double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.getLogPriorTerm in interface DifferentiableStatisticalModelgetLogPriorTerm in interface StatisticalModelDifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior ).DifferentiableStatisticalModel.getESS(),
DifferentiableStatisticalModel.getLogNormalizationConstant()public void addGradientOfLogPriorTerm(double[] grad,
int start)
throws Exception
DifferentiableStatisticalModelDifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.addGradientOfLogPriorTerm in interface DifferentiableStatisticalModelgrad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredException - if something went wrong with the computing of the gradientsDifferentiableStatisticalModel.getLogPriorTerm()public void initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore.initializeFunction in interface DifferentiableSequenceScoreindex - the index of the class the DifferentiableSequenceScore modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the data setsweights - the weights of the sequences in the data setsException - if something went wrongpublic void initializeFunctionRandomly(boolean freeParams)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore randomly. It has to
create the underlying structure of the DifferentiableSequenceScore.initializeFunctionRandomly in interface DifferentiableSequenceScorefreeParams - indicates whether the (reduced) parameterization is usedException - if something went wrongprotected void fromXML(StringBuffer xml) throws NonParsableException
AbstractDifferentiableSequenceScoreStorable
interface to create a scoring function from a StringBuffer.fromXML in class AbstractDifferentiableSequenceScorexml - the XML representation as StringBufferNonParsableException - if the StringBuffer could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)public String getInstanceName()
SequenceScoregetInstanceName in interface SequenceScorepublic double getLogScoreFor(Sequence seq, int start)
SequenceScoregetLogScoreFor in interface SequenceScoreseq - the Sequencestart - the start position in the SequenceSequencepublic double getLogScoreAndPartialDerivation(Sequence seq, int start, IntList indices, DoubleList partialDer)
DifferentiableSequenceScoreSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.getLogScoreAndPartialDerivation in interface DifferentiableSequenceScoreseq - the Sequencestart - the start position in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zeropartialDer - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zeroSequencepublic int getNumberOfParameters()
DifferentiableSequenceScoreDifferentiableSequenceScore. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN.getNumberOfParameters in interface DifferentiableSequenceScoreDifferentiableSequenceScoreDifferentiableSequenceScore.UNKNOWNpublic double[] getCurrentParameterValues()
throws Exception
DifferentiableSequenceScoredouble array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.getCurrentParameterValues in interface DifferentiableSequenceScoreException - if no parameters exist (yet)public void setParameters(double[] params,
int start)
DifferentiableSequenceScoreparams between start and
start + DifferentiableSequenceScore.getNumberOfParameters() - 1setParameters in interface DifferentiableSequenceScoreparams - the new parametersstart - the start index in paramspublic boolean isInitialized()
SequenceScoreSequenceScore.getLogScoreFor(Sequence).isInitialized in interface SequenceScoretrue if the instance is initialized, false
otherwisepublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.public int getNumberOfRecommendedStarts()
DifferentiableSequenceScoregetNumberOfRecommendedStarts in interface DifferentiableSequenceScoregetNumberOfRecommendedStarts in class AbstractDifferentiableSequenceScorepublic boolean isNormalized()
DifferentiableStatisticalModelfalse.isNormalized in interface DifferentiableStatisticalModelisNormalized in class AbstractDifferentiableStatisticalModeltrue if the implemented score is already normalized
to 1, false otherwisepublic String toString(NumberFormat nf)
SequenceScoreString representation of the instance.toString in interface SequenceScorenf - the NumberFormat for the String representation of parameters or probabilitiesString representation of the instancepublic DifferentiableStatisticalModel getFunction() throws CloneNotSupportedException
CloneNotSupportedException - if the internal function could not be clonedpublic boolean modify(int offsetLeft,
int offsetRight)
MutableoffsetLeft
and offsetRight define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.public boolean isStrandModel()
true if the internal DifferentiableStatisticalModel is a StrandDiffSM otherwise false.true if the internal DifferentiableStatisticalModel is a StrandDiffSM otherwise falsepublic StrandedLocatedSequenceAnnotationWithLength.Strand getStrand(Sequence seq, int startPos)
StrandedLocatedSequenceAnnotationWithLength.Strand for a Sequence beginning at startPos.seq - the sequencestartPos - the start positionStrandedLocatedSequenceAnnotationWithLength.Strandpublic void initializeHiddenUniformly()
DifferentiableStatisticalModel uniformly if it is a AbstractMixtureDiffSM.