public abstract class HomogeneousDiffSM extends AbstractVariableLengthDiffSM implements SamplingDifferentiableStatisticalModel
DifferentiableSequenceScores.alphabets, length, rUNKNOWN| Modifier | Constructor and Description |
|---|---|
protected |
HomogeneousDiffSM(AlphabetContainer alphabets)
This is the main constructor that creates an instance of a
HomogeneousDiffSM that models sequences of arbitrary
length. |
protected |
HomogeneousDiffSM(AlphabetContainer alphabets,
int length)
This is the main constructor that creates an instance of a
HomogeneousDiffSM that models sequences of a given
length. |
protected |
HomogeneousDiffSM(StringBuffer source)
This is the constructor for
Storable. |
| Modifier and Type | Method and Description |
|---|---|
abstract byte |
getMaximalMarkovOrder()
Returns the maximal used markov oder.
|
abstract void |
initializeUniformly(boolean freeParams)
This method allows to initialize the instance with an uniform distribution.
|
getLogNormalizationConstant, getLogPartialNormalizationConstant, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreForclone, emitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, isNormalized, isNormalizedfromXML, getAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreFor, getNumberOfRecommendedStarts, getNumberOfStarts, getNumericalCharacteristics, toStringequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetSamplingGroupsaddGradientOfLogPriorTerm, getESS, getLogNormalizationConstant, getLogPartialNormalizationConstant, getLogPriorTerm, getSizeOfEventSpaceForRandomVariablesOfParameter, isNormalizedclone, getCurrentParameterValues, getInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfParameters, getNumberOfRecommendedStarts, initializeFunction, initializeFunctionRandomly, setParametersemitDataSet, getLogProbFor, getLogProbFor, getLogProbForgetAlphabetContainer, getCharacteristics, getInstanceName, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics, isInitialized, toStringgetLogNormalizationConstant, getLogPartialNormalizationConstant, setStatisticForHyperparametersprotected HomogeneousDiffSM(AlphabetContainer alphabets)
HomogeneousDiffSM that models sequences of arbitrary
length.alphabets - the AlphabetContainerprotected HomogeneousDiffSM(AlphabetContainer alphabets, int length)
HomogeneousDiffSM that models sequences of a given
length.alphabets - the AlphabetContainerlength - the length of the modeled sequencesprotected HomogeneousDiffSM(StringBuffer source) throws NonParsableException
Storable. Creates a new
HomogeneousDiffSM out of its XML representation.source - the XML representation as StringBufferNonParsableException - if the XML representation could not be parsedpublic abstract byte getMaximalMarkovOrder()
getMaximalMarkovOrder in interface StatisticalModelgetMaximalMarkovOrder in class AbstractDifferentiableStatisticalModelpublic abstract void initializeUniformly(boolean freeParams)
freeParams - a switch whether to take only free parameters or to take all