|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.classifier.assessment.ClassifierAssessment
de.jstacs.classifier.assessment.Sampled_RepeatedHoldOutExperiment
public class Sampled_RepeatedHoldOutExperiment
This class is a special ClassifierAssessment that partitions the data
of a user-specified reference class (typically the smallest class) and
samples non-overlapping for all other classes, so that one gets the same
number of sequences (and the same lengths of the sequences) in each train and
test dataset.
Sampled_RepeatedHoldOutAssessParameterSet| Field Summary |
|---|
| Fields inherited from class de.jstacs.classifier.assessment.ClassifierAssessment |
|---|
myAbstractClassifier, myModel, myTempMeanResultSets, skipLastClassifiersDuringClassifierTraining |
| Constructor Summary | |
|---|---|
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a
Sampled_RepeatedHoldOutExperiment. |
protected |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of
Models. |
| Method Summary | |
|---|---|
protected void |
evaluateClassifier(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample[] s,
ProgressUpdater pU)
This method must be implemented in all subclasses. |
| Methods inherited from class de.jstacs.classifier.assessment.ClassifierAssessment |
|---|
assess, assess, assess, getClassifier, getNameOfAssessment, prepareAssessment, test, train |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
protected Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
throws IllegalArgumentException,
WrongAlphabetException,
CloneNotSupportedException,
ClassDimensionException
Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. If
buildClassifiersByCrossProduct is true, the
cross-product of all Models in aMs is built to
obtain these classifiers.
aCs - the predefined classifiersaMs - the Models that are used to build additional
classifiersbuildClassifiersByCrossProduct - Determines how classifiers are constructed using the given
models. Suppose a k-class problem. In this case, each
classifier is supposed to consist of k models, one responsible
for each class. S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.checkAlphabetConsistencyAndLength - indicates if alphabets and lengths shall be checked for
consistency
IllegalArgumentException - if the classifiers have different lengths
WrongAlphabetException - if the classifiers use different alphabets
CloneNotSupportedException - if something went wrong while cloning
ClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier[],
Model[][], boolean, boolean)
public Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
throws IllegalArgumentException,
WrongAlphabetException,
CloneNotSupportedException,
ClassDimensionException
Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifiers.
aCs - contains the classifiers to be assessed,assess( ... ).s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengths
WrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainer
CloneNotSupportedException - if something went wrong while cloning
ClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier...)
public Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
throws IllegalArgumentException,
WrongAlphabetException,
CloneNotSupportedException,
ClassDimensionException
Sampled_RepeatedHoldOutExperiment from a set of
Models. The argument buildClassifiersByCrossProduct
determines how these Models are combined to classifiers.
buildClassifiersByCrossProduct - S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.aMs - aMs[i]) contains the
models according to class i.s... . s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengths
WrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainer
CloneNotSupportedException - if something went wrong while cloning
ClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(boolean, Model[][])
public Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
throws IllegalArgumentException,
WrongAlphabetException,
CloneNotSupportedException,
ClassDimensionException
AbstractClassifiers and those constructed using the given
AbstractModels by a
Sampled_RepeatedHoldOutExperiment.
aCs - contains some AbstractClassifier that should be
assessed in addition to the AbstractClassifiers
constructed using the given
AbstractModelsbuildClassifiersByCrossProduct - S_i be the set of all models in
aMs[i]. Let S be the set
S_1 x S_2 x ... x S_k (cross-product).true: all possible classifiers consisting of a
subset (set of k models) of S are constructed false: one classifier consisting of the models
aMs[0][i],aMs[1][i],...,
aMs[k][i] for a fixed i is
constructed. In this case, all second dimensions of
aMs have to be equal, say m. In
total m classifiers are constructed.aMs - aMs[i]) contains the
models according to class i.s... . s in order (s[0]
contains foreground data, s[1] contains
background data)
IllegalArgumentException - if the classifiers have different lengths
WrongAlphabetException - if not all given classifiers are defined on the same
AlphabetContainer
CloneNotSupportedException - if something went wrong while cloning
ClassDimensionException - if there is something wrong with the class dimension of the
classifierClassifierAssessment.ClassifierAssessment(AbstractClassifier[],
boolean, Model[][])| Method Detail |
|---|
protected void evaluateClassifier(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample[] s,
ProgressUpdater pU)
throws IllegalArgumentException,
Exception
ClassifierAssessmenttrain() to train classifiers/models using
train data test() to cause evaluation (test) of trained
classifiers
evaluateClassifier in class ClassifierAssessmentmp - defines which performance measures are used to assess
classifiersassessPS - contains assessment specific parameters (like: number of
iterations of a k-fold-crossvalidation)s - data to be used for assessment (both: test and train data)pU - a ProgressUpdater that mainly has to be used to allow
the user to cancel a current running classifier assessment.
This ProgressUpdater is guaranteed to be not
null. In certain cases aborting a classifier
assessment will not be allowed for example in case of
KFoldCrossValidation. In this case the given
ProgressUpdater should be ignored. pU.setMax()= number of iterations of the assessment loop
pU.setValue()=iteration+1;
train();
test();
pU.isCancelled()))
IllegalArgumentException - if the given ClassifierAssessmentAssessParameterSet
is of wrong type
Exception - that occurred during training or using classifiers/models
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||