|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.algorithms.optimization.DifferentiableFunction
de.jstacs.classifier.scoringFunctionBased.logPrior.LogPrior
de.jstacs.classifier.scoringFunctionBased.logPrior.SimpleGaussianSumLogPrior
public class SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter.
| Field Summary |
|---|
| Fields inherited from class de.jstacs.classifier.scoringFunctionBased.logPrior.LogPrior |
|---|
UNKNOWN |
| Constructor Summary | |
|---|---|
SimpleGaussianSumLogPrior(double sigma)
Creates a new SimpleGaussianSumLogPrior with mean 0 and variance
sigma for all parameters, including the class parameters. |
|
SimpleGaussianSumLogPrior(StringBuffer xml)
The standard constructor for the interface Storable. |
|
| Method Summary | |
|---|---|
void |
addGradientFor(double[] params,
double[] grad)
Adds the gradient of the log-prior using the current parameters to a given vector. |
double |
evaluateFunction(double[] params)
Evaluates the function at a certain vector (in mathematical sense) x. |
int |
getDimensionOfScope()
Returns the dimension of the scope of the Function. |
String |
getInstanceName()
Returns a short instance name. |
SimpleGaussianSumLogPrior |
getNewInstance()
This method returns an empty new instance of the current prior. |
StringBuffer |
toXML()
Encodes the prior as an XML representation. |
| Methods inherited from class de.jstacs.classifier.scoringFunctionBased.logPrior.LogPrior |
|---|
evaluateGradientOfFunction, set |
| Methods inherited from class de.jstacs.algorithms.optimization.DifferentiableFunction |
|---|
findOneDimensionalMin |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public SimpleGaussianSumLogPrior(double sigma)
SimpleGaussianSumLogPrior with mean 0 and variance
sigma for all parameters, including the class parameters.
sigma - the variance
public SimpleGaussianSumLogPrior(StringBuffer xml)
throws NonParsableException
Storable.
Creates a new SimpleGaussianSumLogPrior out of its XML
representation.
xml - the XML representation as StringBuffer
NonParsableException - if the SimpleGaussianSumLogPrior could not be
reconstructed out of the XML representation (the
StringBuffer could not be parsed)Storable| Method Detail |
|---|
public void addGradientFor(double[] params,
double[] grad)
LogPrior
addGradientFor in class LogPriorparams - the parametersgrad - the vectorpublic double evaluateFunction(double[] params)
Functionx.
params - the current vector
public int getDimensionOfScope()
FunctionFunction.
n with
f: R^n -> R
public SimpleGaussianSumLogPrior getNewInstance()
throws CloneNotSupportedException
LogPriorScoringFunction
s that may be inside the instance. The ScoringFunctions must be
set by an invocation of the method
LogPrior.set(boolean, ScoringFunction...).
getNewInstance in class LogPriorCloneNotSupportedException - if something went wrong while cloningLogPrior.set(boolean, ScoringFunction...)public StringBuffer toXML()
LogPriorLogPrior.set(boolean, ScoringFunction...)
has to be invoked after decoding.
toXML in interface StorabletoXML in class LogPriorpublic String getInstanceName()
LogPrior
getInstanceName in class LogPrior
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||