|
||||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||
See:
Description
| Class Summary | |
|---|---|
| CompositeLogPrior | This class implements a composite prior that can be used for NormalizableScoringFunction. |
| DoesNothingLogPrior | This class defines a LogPrior that does not penalize any parameter. |
| LogPrior | The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
| SeparateGaussianLogPrior | Class for a LogPrior that defines a Gaussian prior on the parameters
of a set of NormalizableScoringFunctions
and a set of class parameters. |
| SeparateLaplaceLogPrior | Class for a LogPrior that defines a Laplace prior on the parameters
of a set of NormalizableScoringFunctions
and a set of class parameters. |
| SeparateLogPrior | Abstract class for priors that penalize each parameter value independently and have some variances (and possible means) as hyperparameters. |
| SimpleGaussianSumLogPrior | This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter. |
Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors.
|
||||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||