|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
public interface NormalizableScoringFunction
The interface for normalizable ScoringFunctions.
| Field Summary |
|---|
| Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
|---|
UNKNOWN |
| Method Summary | |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of getLogPriorTerm() for each
parameter of this model. |
double |
getEss()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
double |
getInitialClassParam(double classProb)
Returns the initial class parameter for the class this ScoringFunction is responsible for, based on the class
probability classProb. |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized to 1 or not. |
| Methods inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
|---|
clone, getAlphabetContainer, getCurrentParameterValues, getInstanceName, getLength, getLogScore, getLogScore, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfParameters, getNumberOfRecommendedStarts, initializeFunction, initializeFunctionRandomly, isInitialized, setParameters |
| Methods inherited from interface de.jstacs.Storable |
|---|
toXML |
| Method Detail |
|---|
int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
index, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
index - the index of the parameter
double getLogNormalizationConstant()
double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
parameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/NormalizableScoringFunction_LaTeXilb8_1.png)
parameterIndex - the index of the parameter
Exception - if something went wrong with the normalizationgetLogNormalizationConstant()double getEss()
double getLogPriorTerm()
getEss() * getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.
getEss() * getLogNormalizationConstant() + Math.log( prior ).getEss(),
getLogNormalizationConstant()
void addGradientOfLogPriorTerm(double[] grad,
int start)
throws Exception
getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.
grad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
entered
Exception - if something went wrong with the computing of the gradientsgetLogPriorTerm()boolean isNormalized()
false.
true if the implemented score is already normalized
to 1, false otherwisedouble getInitialClassParam(double classProb)
ScoringFunctionScoringFunction is responsible for, based on the class
probability classProb.
getInitialClassParam in interface ScoringFunctionclassProb - the class probability
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||