|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.scoringFunctions.AbstractNormalizableScoringFunction
de.jstacs.scoringFunctions.directedGraphicalModels.BayesianNetworkScoringFunction
public class BayesianNetworkScoringFunction
This class implements a scoring function that is a moral directed graphical
model, i.e. a moral Bayesian network. This implementation also comprises well
known specializations of Bayesian networks like Markov models of arbitrary
order (including weight array matrix models (WAM) and position weight
matrices (PWM)) or Bayesian trees. Different structures can be achieved by
using the corresponding Measure, e.g. InhomogeneousMarkov for
Markov models of arbitrary order.
This scoring function can be used in any
ScoreClassifier, e.g. in a
MSPClassifier to learn
the parameters of the ScoringFunction
using maximum conditional likelihood.
| Field Summary | |
|---|---|
protected double |
ess
The equivalent sample size. |
protected boolean |
isTrained
Indicates if the instance has been trained. |
protected Double |
logNormalizationConstant
Normalization constant to obtain normalized probabilities. |
protected Integer |
numFreePars
The number of free parameters. |
protected int[] |
nums
Used internally. |
protected int[][] |
order
The network structure, used internally. |
protected Parameter[] |
parameters
The parameters of the scoring function. |
protected boolean |
plugInParameters
Indicates if plug-in parameters, i.e. generative (MAP) parameters shall be used upon initialization. |
protected Measure |
structureMeasure
Measure that defines the network structure. |
protected ParameterTree[] |
trees
The trees that represent the context of the random variable (i.e. |
| Fields inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
|---|
alphabets, length, r |
| Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
|---|
UNKNOWN |
| Constructor Summary | |
|---|---|
BayesianNetworkScoringFunction(AlphabetContainer alphabet,
int length,
double ess,
boolean plugInParameters,
Measure structureMeasure)
Creates a new BayesianNetworkScoringFunction that has neither
been initialized nor trained. |
|
BayesianNetworkScoringFunction(BayesianNetworkScoringFunctionParameterSet parameters)
Creates a new BayesianNetworkScoringFunction that has neither
been initialized nor trained from a
BayesianNetworkScoringFunctionParameterSet. |
|
BayesianNetworkScoringFunction(StringBuffer xml)
The standard constructor for the interface Storable. |
|
| Method Summary | |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of NormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. |
BayesianNetworkScoringFunction |
clone()
Creates a clone (deep copy) of the current ScoringFunction
instance. |
protected void |
createTrees(Sample[] data2,
double[][] weights2)
Creates the tree structures that represent the context (array trees) and the parameter objects parameters using the
given Measure structureMeasure. |
protected void |
fromXML(StringBuffer source)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer. |
InstanceParameterSet |
getCurrentParameterSet()
Returns the InstanceParameterSet that has been used to
instantiate the current instance of the implementing class. |
double[] |
getCurrentParameterValues()
Returns a double array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values. |
double |
getEss()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
String |
getInstanceName()
Returns a short instance name. |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
double |
getLogScore(Sequence seq,
int start)
Returns the logarithmic score for the Sequence seq
beginning at position start in the Sequence. |
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
Returns the logarithmic score for a Sequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations. |
int |
getNumberOfParameters()
Returns the number of parameters in this ScoringFunction. |
double[] |
getPositionDependentKMerProb(Sequence kmer)
Returns the probability of kmer for all possible positions in this BayesianNetworkScoringFunction starting at position kmer.getLength()-1 |
int |
getPositionForParameter(int index)
Returns the position in the sequence the parameter index is
responsible for. |
double[][] |
getPWM()
If this BayesianNetworkScoringFunction is a PWM, i.e. |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
void |
initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
This method creates the underlying structure of the ScoringFunction. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the ScoringFunction randomly. |
boolean |
isInitialized()
This method can be used to determine whether the model is initialized. |
protected void |
precomputeNormalization()
Pre-computes all normalization constants. |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of params between start and
start + |
protected void |
setPlugInParameters(int index,
boolean freeParameters,
Sample[] data,
double[][] weights)
Computes and sets the plug-in parameters (MAP estimated parameters) from data using weights. |
String |
toString()
|
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
| Methods inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
|---|
getAlphabetContainer, getInitialClassParam, getLength, getLogScore, getLogScoreAndPartialDerivation, getNumberOfRecommendedStarts, getNumberOfStarts, isNormalized, isNormalized |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Field Detail |
|---|
protected Parameter[] parameters
protected ParameterTree[] trees
protected boolean isTrained
protected double ess
protected Integer numFreePars
protected int[] nums
protected Measure structureMeasure
Measure that defines the network structure.
protected boolean plugInParameters
protected int[][] order
protected Double logNormalizationConstant
| Constructor Detail |
|---|
public BayesianNetworkScoringFunction(AlphabetContainer alphabet,
int length,
double ess,
boolean plugInParameters,
Measure structureMeasure)
throws Exception
BayesianNetworkScoringFunction that has neither
been initialized nor trained.
alphabet - the alphabet of the scoring function boxed in an
AlphabetContainer, e.g
new AlphabetContainer(new DNAAlphabet())length - the length of the scoring function, i.e. the length of the
sequences this scoring function can handleess - the equivalent sample sizeplugInParameters - indicates if plug-in parameters, i.e. generative (MAP)
parameters, shall be used upon initializationstructureMeasure - the Measure used for the structure, e.g.
InhomogeneousMarkov
Exception - if the length of the scoring function is not admissible (<=0)
or the alphabet is not discrete
public BayesianNetworkScoringFunction(BayesianNetworkScoringFunctionParameterSet parameters)
throws ParameterSetParser.NotInstantiableException,
Exception
BayesianNetworkScoringFunction that has neither
been initialized nor trained from a
BayesianNetworkScoringFunctionParameterSet.
parameters - the parameter set
ParameterSetParser.NotInstantiableException - if the BayesianNetworkScoringFunction could not be
instantiated from the
BayesianNetworkScoringFunctionParameterSet
Exception - if the length of the scoring function is not admissible (<=0)
or the alphabet is not discrete
public BayesianNetworkScoringFunction(StringBuffer xml)
throws NonParsableException
Storable.
Recreates a BayesianNetworkScoringFunction from its XML
representation as saved by the method toXML().
xml - the XML representation as StringBuffer
NonParsableException - if the XML code could not be parsed| Method Detail |
|---|
public BayesianNetworkScoringFunction clone()
throws CloneNotSupportedException
ScoringFunctionScoringFunction
instance.
clone in interface ScoringFunctionclone in class AbstractNormalizableScoringFunctionScoringFunction
CloneNotSupportedException - if something went wrong while cloning the
ScoringFunction
public double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
NormalizableScoringFunctionparameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/NormalizableScoringFunction_LaTeXilb8_1.png)
getLogPartialNormalizationConstant in interface NormalizableScoringFunctionparameterIndex - the index of the parameter
Exception - if something went wrong with the normalizationNormalizableScoringFunction.getLogNormalizationConstant()
public void initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
throws Exception
ScoringFunctionScoringFunction.
initializeFunction in interface ScoringFunctionindex - the index of the class the ScoringFunction modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the samplesweights - the weights of the sequences in the samples
Exception - if something went wrong
protected void createTrees(Sample[] data2,
double[][] weights2)
throws Exception
trees) and the parameter objects parameters using the
given Measure structureMeasure.
data2 - the data that is used to compute the structureweights2 - the weights on the sequences in data2
Exception - if the structure is no moral graph or if the lengths of data
and scoring function do not match or other problems
concerning the data occur
protected void setPlugInParameters(int index,
boolean freeParameters,
Sample[] data,
double[][] weights)
data using weights.
index - the index of the class the scoring function is responsible
for, the parameters are estimated from
data[index] and weights[index]freeParameters - indicates if only the free parameters or all parameters should
be used, this also affects the initializationdata - the data used for initializationweights - the weights on the data
protected void fromXML(StringBuffer source)
throws NonParsableException
AbstractNormalizableScoringFunctionStorable
interface to create a scoring function from a StringBuffer.
fromXML in class AbstractNormalizableScoringFunctionsource - the XML representation as StringBuffer
NonParsableException - if the StringBuffer could not be parsedAbstractNormalizableScoringFunction.AbstractNormalizableScoringFunction(StringBuffer)public String toString()
toString in class Objectpublic String getInstanceName()
ScoringFunction
getInstanceName in interface ScoringFunction
public double getLogScore(Sequence seq,
int start)
ScoringFunctionSequence seq
beginning at position start in the Sequence.
getLogScore in interface ScoringFunctionseq - the Sequencestart - the start position in the Sequence
Sequence
public double getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
ScoringFunctionSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation in interface ScoringFunctionseq - the Sequencestart - the start position in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zeropartialDer - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zero
Sequence
public double getLogNormalizationConstant()
throws RuntimeException
NormalizableScoringFunction
getLogNormalizationConstant in interface NormalizableScoringFunctionRuntimeExceptionpublic int getNumberOfParameters()
ScoringFunctionScoringFunction. If the
number of parameters is not known yet, the method returns
ScoringFunction.UNKNOWN.
getNumberOfParameters in interface ScoringFunctionScoringFunctionScoringFunction.UNKNOWN
public void setParameters(double[] params,
int start)
ScoringFunctionparams between start and
start + ScoringFunction.getNumberOfParameters() - 1
setParameters in interface ScoringFunctionparams - the new parametersstart - the start index in paramsprotected void precomputeNormalization()
public double[] getCurrentParameterValues()
throws Exception
ScoringFunctiondouble array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
ScoringFunction.initializeFunction(int, boolean, Sample[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.
getCurrentParameterValues in interface ScoringFunctionException - if no parameters exist (yet)public StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.
toXML in interface Storablepublic double getLogPriorTerm()
NormalizableScoringFunction
NormalizableScoringFunction.getEss() * NormalizableScoringFunction.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.
getLogPriorTerm in interface NormalizableScoringFunctionNormalizableScoringFunction.getEss() * NormalizableScoringFunction.getLogNormalizationConstant() + Math.log( prior ).NormalizableScoringFunction.getEss(),
NormalizableScoringFunction.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad,
int start)
NormalizableScoringFunctionNormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.
addGradientOfLogPriorTerm in interface NormalizableScoringFunctiongrad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredNormalizableScoringFunction.getLogPriorTerm()public double getEss()
NormalizableScoringFunction
getEss in interface NormalizableScoringFunctionpublic int getPositionForParameter(int index)
index is
responsible for.
index - the index of the parameter
public double[] getPositionDependentKMerProb(Sequence kmer)
throws Exception
kmer for all possible positions in this BayesianNetworkScoringFunction starting at position kmer.getLength()-1.
- Parameters:
kmer - the k-mer
- Returns:
- the position-dependent probabilities of this k-mer for position
kmer.getLength()-1 to AbstractNormalizableScoringFunction.getLength()-1
- Throws:
Exception - if the method is called for non-Markov model structures
public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
NormalizableScoringFunctionindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
getSizeOfEventSpaceForRandomVariablesOfParameter in interface NormalizableScoringFunctionindex - the index of the parameter
public void initializeFunctionRandomly(boolean freeParams)
throws Exception
ScoringFunctionScoringFunction randomly. It has to
create the underlying structure of the ScoringFunction.
initializeFunctionRandomly in interface ScoringFunctionfreeParams - indicates whether the (reduced) parameterization is used
Exception - if something went wrongpublic boolean isInitialized()
ScoringFunctionScoringFunction.initializeFunction(int, boolean, Sample[], double[][]).
isInitialized in interface ScoringFunctiontrue if the model is initialized, false
otherwise
public double[][] getPWM()
throws Exception
BayesianNetworkScoringFunction is a PWM, i.e.
structureMeasure=new InhomogeneousMarkov(0)}}, this
method returns the normalized PWM as a double array of
dimension AbstractNormalizableScoringFunction.getLength() x size-of-alphabet.
Exception - if this method is called for a
BayesianNetworkScoringFunction that is not a PWM
public InstanceParameterSet getCurrentParameterSet()
throws Exception
InstantiableFromParameterSetInstanceParameterSet that has been used to
instantiate the current instance of the implementing class. If the
current instance was not created using an InstanceParameterSet,
an equivalent InstanceParameterSet should be returned, so that an
instance created using this InstanceParameterSet would be in
principle equal to the current instance.
getCurrentParameterSet in interface InstantiableFromParameterSetInstanceParameterSet
Exception - if the InstanceParameterSet could not be returned
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||