|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
public interface VariableLengthScoringFunction
This is an interface for all NormalizableScoringFunctions that allow to score
subsequences of arbitrary length. This NormalizableScoringFunction should be the
super class for non-motif NormalizableScoringFunctions like homogeneous Markov
models, cyclic Markov models, ... etc.
| Field Summary |
|---|
| Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
|---|
UNKNOWN |
| Method Summary | |
|---|---|
double |
getLogNormalizationConstant(int length)
This method returns the logarithm of the normalization constant for a given sequence length. |
double |
getLogPartialNormalizationConstant(int parameterIndex,
int length)
This method returns the logarithm of the partial normalization constant for a given parameter index and a sequence length. |
double |
getLogScore(Sequence seq,
int start,
int length)
This method computes the logarithm of the score for a given subsequence. |
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
int length,
IntList indices,
DoubleList dList)
This method computes the logarithm of the score and the partial derivations for a given subsequence. |
void |
setStatisticForHyperparameters(int[] length,
double[] weight)
This method sets the hyperparameters for the model parameters by evaluating the given statistic. |
| Methods inherited from interface de.jstacs.scoringFunctions.NormalizableScoringFunction |
|---|
addGradientOfLogPriorTerm, getEss, getInitialClassParam, getLogNormalizationConstant, getLogPartialNormalizationConstant, getLogPriorTerm, getSizeOfEventSpaceForRandomVariablesOfParameter, isNormalized |
| Methods inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
|---|
clone, getAlphabetContainer, getCurrentParameterValues, getInstanceName, getLength, getLogScore, getLogScore, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfParameters, getNumberOfRecommendedStarts, initializeFunction, initializeFunctionRandomly, isInitialized, setParameters |
| Methods inherited from interface de.jstacs.Storable |
|---|
toXML |
| Method Detail |
|---|
double getLogNormalizationConstant(int length)
length - the sequence length
NormalizableScoringFunction.getLogNormalizationConstant()
double getLogPartialNormalizationConstant(int parameterIndex,
int length)
throws Exception
parameterIndex - the index of the parameterlength - the sequence length
Exception - if something went wrongNormalizableScoringFunction.getLogPartialNormalizationConstant(int)
double getLogScore(Sequence seq,
int start,
int length)
seq - the Sequencestart - the start index in the Sequencelength - the length of the Sequence beginning at start
ScoringFunction.getLogScore(Sequence,
int)
double getLogScoreAndPartialDerivation(Sequence seq,
int start,
int length,
IntList indices,
DoubleList dList)
seq - the Sequencestart - the start index in the Sequencelength - the end index in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zerodList - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zero
ScoringFunction.getLogScoreAndPartialDerivation(Sequence, int,
IntList, DoubleList)
void setStatisticForHyperparameters(int[] length,
double[] weight)
throws Exception
length) and how often (
weight) they have been seen.
length - the non-negative lengths of the sequencesweight - the non-negative weight for the corresponding sequence
Exception - if something went wrongMutable
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||