|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.scoringFunctions.AbstractNormalizableScoringFunction
de.jstacs.scoringFunctions.NormalizedScoringFunction
public final class NormalizedScoringFunction
This class makes an unnormalized NormalizableScoringFunction to a normalized NormalizableScoringFunction.
However, the class allows to use only NormalizableScoringFunction that do not implement VariableLengthScoringFunction.
This class should be used only in cases when it is not possible to avoid its usage.
| Field Summary |
|---|
| Fields inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
|---|
alphabets, length, r |
| Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
|---|
UNKNOWN |
| Constructor Summary | |
|---|---|
NormalizedScoringFunction(NormalizableScoringFunction nsf,
int starts)
Creates a new instance using a given NormalizableScoringFunction. |
|
NormalizedScoringFunction(StringBuffer xml)
This is the constructor for Storable. |
|
| Method Summary | |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of NormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. |
NormalizedScoringFunction |
clone()
Creates a clone (deep copy) of the current ScoringFunction
instance. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a double array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values. |
double |
getEss()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
NormalizableScoringFunction |
getFunction()
This method returns the internal function. |
String |
getInstanceName()
Returns a short instance name. |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
double |
getLogScore(Sequence seq,
int start)
Returns the logarithmic score for the Sequence seq
beginning at position start in the Sequence. |
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
Returns the logarithmic score for a Sequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations. |
static NormalizableScoringFunction |
getNormalizedVersion(NormalizableScoringFunction nsf,
int starts)
This method returns a normalized version of a NormalizableScoringFunction. |
int |
getNumberOfParameters()
Returns the number of parameters in this ScoringFunction. |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts. |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
StrandedLocatedSequenceAnnotationWithLength.Strand |
getStrand(Sequence seq,
int startPos)
This method return the preferred StrandedLocatedSequenceAnnotationWithLength.Strand for a Sequence beginning at startPos. |
void |
initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
This method creates the underlying structure of the ScoringFunction. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the ScoringFunction randomly. |
void |
initializeHiddenUniformly()
This method initializes the hidden parameters of the internal NormalizableScoringFunction uniformly if it is a AbstractMixtureScoringFunction. |
boolean |
isInitialized()
This method can be used to determine whether the model is initialized. |
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized to 1 or not. |
boolean |
isStrandScoringFunction()
This method returns true if the internal NormalizableScoringFunction is a StrandScoringFunction otherwise false. |
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model. |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of params between start and
start + |
String |
toString()
|
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
| Methods inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
|---|
getAlphabetContainer, getInitialClassParam, getLength, getLogScore, getLogScoreAndPartialDerivation, getNumberOfStarts, isNormalized |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public NormalizedScoringFunction(NormalizableScoringFunction nsf,
int starts)
throws Exception
nsf - the function to be used internalstarts - the number of recommended starts (ScoringFunction.getNumberOfRecommendedStarts())
Exception - is nsf could not be cloned or some error occurred during computation of some values
public NormalizedScoringFunction(StringBuffer xml)
throws NonParsableException
Storable.
xml - the xml representation
NonParsableException - if the representation could not be parsed.| Method Detail |
|---|
public static final NormalizableScoringFunction getNormalizedVersion(NormalizableScoringFunction nsf,
int starts)
throws Exception
nsf or an instance of NormalizedScoringFunction using nsf and starts.
nsf - the NormalizableScoringFunction to be normalizedstarts - the number of recommended starts for a NormalizedScoringFunction
Exception - if nsf could not be cloned
public NormalizedScoringFunction clone()
throws CloneNotSupportedException
ScoringFunctionScoringFunction
instance.
clone in interface ScoringFunctionclone in class AbstractNormalizableScoringFunctionScoringFunction
CloneNotSupportedException - if something went wrong while cloning the
ScoringFunctionpublic int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
NormalizableScoringFunctionindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
getSizeOfEventSpaceForRandomVariablesOfParameter in interface NormalizableScoringFunctionindex - the index of the parameter
public double getLogNormalizationConstant()
NormalizableScoringFunction
getLogNormalizationConstant in interface NormalizableScoringFunction
public double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
NormalizableScoringFunctionparameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/NormalizableScoringFunction_LaTeXilb8_1.png)
getLogPartialNormalizationConstant in interface NormalizableScoringFunctionparameterIndex - the index of the parameter
Exception - if something went wrong with the normalizationNormalizableScoringFunction.getLogNormalizationConstant()public double getEss()
NormalizableScoringFunction
getEss in interface NormalizableScoringFunctionpublic double getLogPriorTerm()
NormalizableScoringFunction
NormalizableScoringFunction.getEss() * NormalizableScoringFunction.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.
getLogPriorTerm in interface NormalizableScoringFunctionNormalizableScoringFunction.getEss() * NormalizableScoringFunction.getLogNormalizationConstant() + Math.log( prior ).NormalizableScoringFunction.getEss(),
NormalizableScoringFunction.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad,
int start)
throws Exception
NormalizableScoringFunctionNormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.
addGradientOfLogPriorTerm in interface NormalizableScoringFunctiongrad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
entered
Exception - if something went wrong with the computing of the gradientsNormalizableScoringFunction.getLogPriorTerm()
public void initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
throws Exception
ScoringFunctionScoringFunction.
initializeFunction in interface ScoringFunctionindex - the index of the class the ScoringFunction modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the samplesweights - the weights of the sequences in the samples
Exception - if something went wrong
public void initializeFunctionRandomly(boolean freeParams)
throws Exception
ScoringFunctionScoringFunction randomly. It has to
create the underlying structure of the ScoringFunction.
initializeFunctionRandomly in interface ScoringFunctionfreeParams - indicates whether the (reduced) parameterization is used
Exception - if something went wrong
protected void fromXML(StringBuffer xml)
throws NonParsableException
AbstractNormalizableScoringFunctionStorable
interface to create a scoring function from a StringBuffer.
fromXML in class AbstractNormalizableScoringFunctionxml - the XML representation as StringBuffer
NonParsableException - if the StringBuffer could not be parsedAbstractNormalizableScoringFunction.AbstractNormalizableScoringFunction(StringBuffer)public String getInstanceName()
ScoringFunction
getInstanceName in interface ScoringFunction
public double getLogScore(Sequence seq,
int start)
ScoringFunctionSequence seq
beginning at position start in the Sequence.
getLogScore in interface ScoringFunctionseq - the Sequencestart - the start position in the Sequence
Sequence
public double getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
ScoringFunctionSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation in interface ScoringFunctionseq - the Sequencestart - the start position in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zeropartialDer - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zero
Sequencepublic int getNumberOfParameters()
ScoringFunctionScoringFunction. If the
number of parameters is not known yet, the method returns
ScoringFunction.UNKNOWN.
getNumberOfParameters in interface ScoringFunctionScoringFunctionScoringFunction.UNKNOWN
public double[] getCurrentParameterValues()
throws Exception
ScoringFunctiondouble array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
ScoringFunction.initializeFunction(int, boolean, Sample[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.
getCurrentParameterValues in interface ScoringFunctionException - if no parameters exist (yet)
public void setParameters(double[] params,
int start)
ScoringFunctionparams between start and
start + ScoringFunction.getNumberOfParameters() - 1
setParameters in interface ScoringFunctionparams - the new parametersstart - the start index in paramspublic boolean isInitialized()
ScoringFunctionScoringFunction.initializeFunction(int, boolean, Sample[], double[][]).
isInitialized in interface ScoringFunctiontrue if the model is initialized, false
otherwisepublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.
toXML in interface Storablepublic int getNumberOfRecommendedStarts()
ScoringFunction
getNumberOfRecommendedStarts in interface ScoringFunctiongetNumberOfRecommendedStarts in class AbstractNormalizableScoringFunctionpublic boolean isNormalized()
NormalizableScoringFunctionfalse.
isNormalized in interface NormalizableScoringFunctionisNormalized in class AbstractNormalizableScoringFunctiontrue if the implemented score is already normalized
to 1, false otherwisepublic String toString()
toString in class Object
public NormalizableScoringFunction getFunction()
throws CloneNotSupportedException
CloneNotSupportedException - if the internal function could not be cloned
public boolean modify(int offsetLeft,
int offsetRight)
MutableoffsetLeft
and offsetRight define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.
modify in interface MutableoffsetLeft - the offset on the left sideoffsetRight - the offset on the right side
true if the motif model was modified otherwise
falsepublic boolean isStrandScoringFunction()
true if the internal NormalizableScoringFunction is a StrandScoringFunction otherwise false.
true if the internal NormalizableScoringFunction is a StrandScoringFunction otherwise false
public StrandedLocatedSequenceAnnotationWithLength.Strand getStrand(Sequence seq,
int startPos)
StrandedLocatedSequenceAnnotationWithLength.Strand for a Sequence beginning at startPos.
seq - the sequencestartPos - the start position
StrandedLocatedSequenceAnnotationWithLength.Strandpublic void initializeHiddenUniformly()
NormalizableScoringFunction uniformly if it is a AbstractMixtureScoringFunction.
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||