|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.scoringFunctions.AbstractNormalizableScoringFunction
de.jstacs.scoringFunctions.mix.motifSearch.PositionScoringFunction
de.jstacs.scoringFunctions.mix.motifSearch.DurationScoringFunction
de.jstacs.scoringFunctions.mix.motifSearch.MixtureDuration
public class MixtureDuration
This class implements a mixture of DurationScoringFunctions.
| Field Summary |
|---|
| Fields inherited from class de.jstacs.scoringFunctions.mix.motifSearch.DurationScoringFunction |
|---|
delta, ess, max, min |
| Fields inherited from class de.jstacs.scoringFunctions.mix.motifSearch.PositionScoringFunction |
|---|
internal |
| Fields inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
|---|
alphabets, length, r |
| Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
|---|
UNKNOWN |
| Constructor Summary | |
|---|---|
MixtureDuration(int starts,
DurationScoringFunction... function)
The main constructor of a MixtureDuration. |
|
MixtureDuration(StringBuffer source)
This is the constructor for Storable. |
|
| Method Summary | |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of NormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. |
void |
adjust(int[] length,
double[] weight)
This method adjust the parameter based on the given statistic. |
MixtureDuration |
clone()
Creates a clone (deep copy) of the current ScoringFunction
instance. |
protected void |
fromXML(StringBuffer rep)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a double array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values. |
String |
getInstanceName()
Returns a short instance name. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
double |
getLogScore(int... values)
This method enables the user to get the log-score without using a sequence object. |
double |
getLogScoreAndPartialDerivation(IntList indices,
DoubleList partialDer,
int... values)
This method enables the user to get the log-score and the partial derivations without using a sequence object. |
int |
getNumberOfParameters()
Returns the number of parameters in this ScoringFunction. |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts. |
protected String |
getRNotation(String distributionName)
This method returns the distribution in R notation. |
void |
initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
This method creates the underlying structure of the ScoringFunction. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the ScoringFunction randomly. |
void |
initializeUniformly()
This method set special parameters that lead to an uniform distribution. |
boolean |
isInitialized()
This method can be used to determine whether the model is initialized. |
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized to 1 or not. |
void |
modify(int delta)
This method modifies the underlying AlphabetContainer. |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of params between start and
start + |
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
| Methods inherited from class de.jstacs.scoringFunctions.mix.motifSearch.DurationScoringFunction |
|---|
getEss, getLogNormalizationConstant, getLogPartialNormalizationConstant, getMax, getMin, getNumberOfPossibilities, getSizeOfEventSpaceForRandomVariablesOfParameter, isPossible, next, reset, toString |
| Methods inherited from class de.jstacs.scoringFunctions.mix.motifSearch.PositionScoringFunction |
|---|
getInternalPosition, getLogScore, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivationForInternal, getLogScoreForInternal, getValuesFromSequence |
| Methods inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
|---|
getAlphabetContainer, getInitialClassParam, getLength, getLogScore, getLogScoreAndPartialDerivation, getNumberOfStarts, isNormalized |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public MixtureDuration(int starts,
DurationScoringFunction... function)
throws WrongAlphabetException,
CloneNotSupportedException,
IllegalArgumentException
MixtureDuration.
starts - the number of recommended startsfunction - the DurationScoringFunctions for the components
CloneNotSupportedException - if at least one element of functions could not
be cloned
IllegalArgumentException - if the starts is smaller than zero (0)
WrongAlphabetException - if at least one element of function has
an AlphabetContainer that is not equal to those
of the other elements of function
public MixtureDuration(StringBuffer source)
throws NonParsableException
Storable. Creates a new
MixtureDuration out of a StringBuffer.
source - the XML representation as StringBuffer
NonParsableException - if the XML representation could not be parsed| Method Detail |
|---|
public MixtureDuration clone()
throws CloneNotSupportedException
ScoringFunctionScoringFunction
instance.
clone in interface ScoringFunctionclone in class PositionScoringFunctionScoringFunction
CloneNotSupportedException - if something went wrong while cloning the
ScoringFunction
public void adjust(int[] length,
double[] weight)
DurationScoringFunction
adjust in class DurationScoringFunctionlength - an array containing length valuesweight - an array containing corresponding weight valuespublic double getLogScore(int... values)
PositionScoringFunction
getLogScore in class PositionScoringFunctionvalues - the values
public double getLogScoreAndPartialDerivation(IntList indices,
DoubleList partialDer,
int... values)
PositionScoringFunction
getLogScoreAndPartialDerivation in class PositionScoringFunctionindices - a list for the indices of the parameterspartialDer - a list of the partial derivationsvalues - the values
public void addGradientOfLogPriorTerm(double[] grad,
int start)
throws Exception
NormalizableScoringFunctionNormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.
grad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
entered
Exception - if something went wrong with the computing of the gradientsNormalizableScoringFunction.getLogPriorTerm()public double getLogPriorTerm()
NormalizableScoringFunction
NormalizableScoringFunction.getEss() * NormalizableScoringFunction.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.
NormalizableScoringFunction.getEss() * NormalizableScoringFunction.getLogNormalizationConstant() + Math.log( prior ).NormalizableScoringFunction.getEss(),
NormalizableScoringFunction.getLogNormalizationConstant()
public double[] getCurrentParameterValues()
throws Exception
ScoringFunctiondouble array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
ScoringFunction.initializeFunction(int, boolean, Sample[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.
Exception - if no parameters exist (yet)public String getInstanceName()
ScoringFunction
public int getNumberOfParameters()
ScoringFunctionScoringFunction. If the
number of parameters is not known yet, the method returns
ScoringFunction.UNKNOWN.
ScoringFunctionScoringFunction.UNKNOWN
public void initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
throws Exception
ScoringFunctionScoringFunction.
index - the index of the class the ScoringFunction modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the samplesweights - the weights of the sequences in the samples
Exception - if something went wrongpublic void initializeUniformly()
DurationScoringFunction
initializeUniformly in class DurationScoringFunction
public void initializeFunctionRandomly(boolean freeParams)
throws Exception
ScoringFunctionScoringFunction randomly. It has to
create the underlying structure of the ScoringFunction.
freeParams - indicates whether the (reduced) parameterization is used
Exception - if something went wrongpublic boolean isInitialized()
ScoringFunctionScoringFunction.initializeFunction(int, boolean, Sample[], double[][]).
true if the model is initialized, false
otherwisepublic boolean isNormalized()
NormalizableScoringFunctionfalse.
isNormalized in interface NormalizableScoringFunctionisNormalized in class AbstractNormalizableScoringFunctiontrue if the implemented score is already normalized
to 1, false otherwise
public void setParameters(double[] params,
int start)
ScoringFunctionparams between start and
start + ScoringFunction.getNumberOfParameters() - 1
params - the new parametersstart - the start index in paramsprotected String getRNotation(String distributionName)
DurationScoringFunction
getRNotation in class DurationScoringFunctiondistributionName - the name of the distribution, e.g., "p"
REnvironmentpublic void modify(int delta)
DurationScoringFunctionAlphabetContainer. This might be necessary if the motif length changed.
modify in class DurationScoringFunctiondelta - the changeMutable.modify(int, int),
MutableMotifDiscoverer.modifyMotif(int, int, int)public int getNumberOfRecommendedStarts()
ScoringFunction
getNumberOfRecommendedStarts in interface ScoringFunctiongetNumberOfRecommendedStarts in class AbstractNormalizableScoringFunction
protected void fromXML(StringBuffer rep)
throws NonParsableException
AbstractNormalizableScoringFunctionStorable
interface to create a scoring function from a StringBuffer.
fromXML in class DurationScoringFunctionrep - the XML representation as StringBuffer
NonParsableException - if the StringBuffer could not be parsedAbstractNormalizableScoringFunction.AbstractNormalizableScoringFunction(StringBuffer)public StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.
toXML in interface StorabletoXML in class DurationScoringFunction
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||