Uses of Interface
de.jstacs.models.hmm.transitions.TransitionWithSufficientStatistic

Packages that use TransitionWithSufficientStatistic
de.jstacs.models.hmm.transitions The package provides all interfaces and classes for transitions used in hidden Markov models. 
 

Uses of TransitionWithSufficientStatistic in de.jstacs.models.hmm.transitions
 

Subinterfaces of TransitionWithSufficientStatistic in de.jstacs.models.hmm.transitions
 interface SamplingTransition
          This interface declares all method used during a sampling.
 interface TrainableAndDifferentiableTransition
          This interface unifies the interfaces TrainableTransition and DifferentiableTransition.
 interface TrainableTransition
          This class declares methods that allow for estimating the parameters from a sufficient statistic, as for instance done in the (modified) Baum-Welch algorithm, viterbi training, or Gibbs sampling.
 

Classes in de.jstacs.models.hmm.transitions that implement TransitionWithSufficientStatistic
 class BasicHigherOrderTransition
          This class implements the basic transition that allows to be trained using the viterbi or the Baum-Welch algorithm.
 class HigherOrderTransition
          This class can be used in any AbstractHMM allowing to use gradient based or sampling training algorithm.