|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | |
|---|---|
| de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifiers that are based on SequenceScores. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels by
a unified generative-discriminative learning principle |
| de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
| de.jstacs.classifiers.differentiableSequenceScoreBased.msp | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL) |
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | Provides the classes for AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| Classes in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior used by de.jstacs.classifiers.differentiableSequenceScoreBased | |
|---|---|
| LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
|
| Classes in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior used by de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | |
|---|---|
| LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
|
| Classes in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior used by de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | |
|---|---|
| CompositeLogPrior
This class implements a composite prior that can be used for DifferentiableStatisticalModel. |
|
| DoesNothingLogPrior
This class defines a LogPrior that does not penalize any parameter. |
|
| LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
|
| SeparateLogPrior
Abstract class for priors that penalize each parameter value independently and have some variances (and possible means) as hyperparameters. |
|
| SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter. |
|
| Classes in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior used by de.jstacs.classifiers.differentiableSequenceScoreBased.msp | |
|---|---|
| LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
|
| Classes in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior used by de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | |
|---|---|
| LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||