|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
public class FSDAGTrainSM
This class can be used for any discrete fixed structure
directed acyclic graphical model ( FSDAGTrainSM).
| Field Summary |
|---|
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM |
|---|
constraints |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
|---|
DEFAULT_STREAM, sostream |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
|---|
params, trained |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
|---|
alphabets, length |
| Constructor Summary | |
|---|---|
FSDAGTrainSM(FSDAGTrainSMParameterSet params)
This is the main constructor. |
|
FSDAGTrainSM(StringBuffer xml)
The standard constructor for the interface Storable. |
|
| Method Summary | |
|---|---|
void |
drawParameters(DataSet data,
double[] weights,
int[][] graph)
This method draws the parameters of the model from the a posteriori density. |
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ... |
byte |
getMaximalMarkovOrder()
This method returns the maximal used Markov order, if possible. |
String |
getStructure()
Returns a String representation of the underlying graph. |
protected String |
getXMLTag()
Returns the XML tag that is used for this model in DiscreteGraphicalTrainSM.fromXML(StringBuffer) and DiscreteGraphicalTrainSM.toXML(). |
protected void |
set(DGTrainSMParameterSet params,
boolean trained)
Sets the parameters as internal parameters and does some essential computations. |
void |
train(DataSet data,
double[] weights)
Trains the TrainableStatisticalModel object given the data as DataSet using
the specified weights. |
void |
train(DataSet data,
double[] weights,
int[][] graph)
Computes the model with structure graph. |
static void |
train(TrainableStatisticalModel[] models,
int[][] graph,
double[][] weights,
DataSet... data)
Computes the models with structure graph. |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM |
|---|
checkAcyclic, clone, createConstraints, drawParameters, emitDataSet, estimateParameters, getFurtherModelInfos, getLogPriorTerm, getLogProbFor, getNumericalCharacteristics, setFurtherModelInfos, toString |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
|---|
check, setOutputStream |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
|---|
fromXML, getCurrentParameterSet, getDescription, getESS, isInitialized, toXML |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
|---|
getAlphabetContainer, getCharacteristics, getLength, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, train |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public FSDAGTrainSM(FSDAGTrainSMParameterSet params)
throws CloneNotSupportedException,
IllegalArgumentException,
NonParsableException
FSDAGTrainSM from
the given FSDAGTrainSMParameterSet.
params - the given parameter set
CloneNotSupportedException - if the parameter set could not be cloned
IllegalArgumentException - if the parameter set is not instantiated
NonParsableException - if the parameter set is not parsableDAGTrainSM.DAGTrainSM(de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.IDGTrainSMParameterSet)
public FSDAGTrainSM(StringBuffer xml)
throws NonParsableException
Storable.
Creates a new FSDAGTrainSM out of its XML representation.
xml - the XML representation as StringBuffer
NonParsableException - if the FSDAGTrainSM could not be reconstructed out of
the XML representation (the StringBuffer could not be
parsed)Storable,
DAGTrainSM.DAGTrainSM(StringBuffer)| Method Detail |
|---|
public String getInstanceName()
SequenceScore
public byte getMaximalMarkovOrder()
StatisticalModel
getMaximalMarkovOrder in interface StatisticalModelgetMaximalMarkovOrder in class AbstractTrainableStatisticalModelprotected String getXMLTag()
DiscreteGraphicalTrainSMDiscreteGraphicalTrainSM.fromXML(StringBuffer) and DiscreteGraphicalTrainSM.toXML().
getXMLTag in class DiscreteGraphicalTrainSMDiscreteGraphicalTrainSM.fromXML(StringBuffer) and
DiscreteGraphicalTrainSM.toXML()DiscreteGraphicalTrainSM.fromXML(StringBuffer),
DiscreteGraphicalTrainSM.toXML()
public void train(DataSet data,
double[] weights)
throws Exception
TrainableStatisticalModelTrainableStatisticalModel object given the data as DataSet using
the specified weights. The weight at position i belongs to the element at
position i. So the array weight should have the number of
sequences in the sample as dimension. (Optionally it is possible to use
weight == null if all weights have the value one.)train(data1); train(data2)
should be a fully trained model over data2 and not over
data1+data2. All parameters of the model were given by the
call of the constructor.
data - the given sequences as DataSetweights - the weights of the elements, each weight should be
non-negative
Exception - if the training did not succeed (e.g. the dimension of
weights and the number of sequences in the
sample do not match)DataSet.getElementAt(int),
DataSet.ElementEnumerator
public void train(DataSet data,
double[] weights,
int[][] graph)
throws Exception
graph.
data - the DataSetweights - the weights for the sequences in the DataSetgraph - the graph
Exception - if something went wrong
public void drawParameters(DataSet data,
double[] weights,
int[][] graph)
throws Exception
null. Furthermore this method enables you to
specify a new graph structure.
data - a DataSet or nullweights - the (positive) weights for each sequence of the DataSet
or nullgraph - the graph or null for the current graph
Exception - if something went wrongDAGTrainSM.drawParameters(DataSet, double[]),
DAGTrainSM.checkAcyclic(int, int[][])
public static void train(TrainableStatisticalModel[] models,
int[][] graph,
double[][] weights,
DataSet... data)
throws Exception
graph.
models - an array of AbstractTrainableStatisticalModels containing
only instances of FSDAGTrainSMdata - the DataSetweights - the weights for the sequences in the DataSetgraph - the graph
Exception - if something went wrong
protected void set(DGTrainSMParameterSet params,
boolean trained)
throws CloneNotSupportedException,
NonParsableException
DiscreteGraphicalTrainSMfromParameterSet-methods.
set in class InhomogeneousDGTrainSMparams - the new ParameterSettrained - indicates if the model is trained or not
CloneNotSupportedException - if the parameter set could not be cloned
NonParsableException - if the parameters of the model could not be parsedpublic String getStructure()
InhomogeneousDGTrainSMString representation of the underlying graph.
getStructure in class DAGTrainSMString representation of the underlying graph
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||