|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
public abstract class DAGTrainSM
The abstract class for directed acyclic graphical models
(DAGTrainSM).
| Field Summary | |
|---|---|
protected InhCondProb[] |
constraints
The constraints for the model. |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
|---|
DEFAULT_STREAM, sostream |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
|---|
params, trained |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
|---|
alphabets, length |
| Constructor Summary | |
|---|---|
protected |
DAGTrainSM(IDGTrainSMParameterSet params)
This is the main constructor. |
protected |
DAGTrainSM(StringBuffer xml)
The standard constructor for the interface Storable. |
| Method Summary | |
|---|---|
protected static boolean |
checkAcyclic(int length,
int[][] graph)
This method checks whether a given graph is acyclic. |
DAGTrainSM |
clone()
Follows the conventions of Object's clone()-method. |
protected void |
createConstraints(int[][] structure)
This method creates the constraints for a given structure. |
protected void |
drawParameters(DataSet data,
double[] weights)
This method draws the parameter of the model from the likelihood or the posterior, respectively. |
DataSet |
emitDataSet(int n,
int... lengths)
This method returns a DataSet object containing artificial
sequence(s). |
protected void |
estimateParameters(DataSet data,
double[] weights)
This method estimates the parameter of the model from the likelihood or the posterior, respectively. |
protected StringBuffer |
getFurtherModelInfos()
Returns further model information as a StringBuffer. |
double |
getLogPriorTerm()
Returns a value that is proportional to the log of the prior. |
double |
getLogProbFor(Sequence sequence,
int startpos,
int endpos)
Returns the logarithm of the probability of (a part of) the given sequence given the model. |
NumericalResultSet |
getNumericalCharacteristics()
Returns the subset of numerical values that are also returned by SequenceScore.getCharacteristics(). |
String |
getStructure()
Returns a String representation of the underlying graph. |
protected void |
setFurtherModelInfos(StringBuffer xml)
This method replaces the internal model information with those from a StringBuffer. |
String |
toString()
Should give a simple representation (text) of the model as String. |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
|---|
check, set, setOutputStream |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
|---|
fromXML, getCurrentParameterSet, getDescription, getESS, getXMLTag, isInitialized, toXML |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
|---|
getAlphabetContainer, getCharacteristics, getLength, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, train |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.trainable.TrainableStatisticalModel |
|---|
train |
| Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
|---|
getInstanceName |
| Field Detail |
|---|
protected InhCondProb[] constraints
| Constructor Detail |
|---|
protected DAGTrainSM(IDGTrainSMParameterSet params)
throws CloneNotSupportedException,
IllegalArgumentException,
NonParsableException
DAGTrainSM from the
given IDGTrainSMParameterSet.
params - the given parameter set
CloneNotSupportedException - if the parameter set could not be cloned
IllegalArgumentException - if the parameter set is not instantiated
NonParsableException - if the parameter set is not parsableInhomogeneousDGTrainSM.InhomogeneousDGTrainSM(IDGTrainSMParameterSet)
protected DAGTrainSM(StringBuffer xml)
throws NonParsableException
Storable.
Creates a new DAGTrainSM out of its XML representation.
xml - the XML representation as StringBuffer
NonParsableException - if the DAGTrainSM could not be reconstructed out of the
XML representation (the StringBuffer could not be
parsed)Storable,
InhomogeneousDGTrainSM.InhomogeneousDGTrainSM(StringBuffer)| Method Detail |
|---|
public DAGTrainSM clone()
throws CloneNotSupportedException
AbstractTrainableStatisticalModelObject's clone()-method.
clone in interface SequenceScoreclone in interface TrainableStatisticalModelclone in class InhomogeneousDGTrainSMAbstractTrainableStatisticalModel
(the member-AlphabetContainer isn't deeply cloned since
it is assumed to be immutable). The type of the returned object
is defined by the class X directly inherited from
AbstractTrainableStatisticalModel. Hence X's
clone()-method should work as:Object o = (X)super.clone(); o defined by
X that are not of simple data-types like
int, double, ... have to be deeply
copied return o
CloneNotSupportedException - if something went wrong while cloning
public DataSet emitDataSet(int n,
int... lengths)
throws NotTrainedException,
Exception
StatisticalModelDataSet object containing artificial
sequence(s).
emitDataSet( int n, int l ) should return a data set with
n sequences of length l.
emitDataSet( int n, int[] l ) should return a data set with
n sequences which have a sequence length corresponding to
the entry in the given array l.
emitDataSet( int n ) and
emitDataSet( int n, null ) should return a sample with
n sequences of length of the model (
SequenceScore.getLength()).
Exception.
emitDataSet in interface StatisticalModelemitDataSet in class AbstractTrainableStatisticalModeln - the number of sequences that should be contained in the
returned samplelengths - the length of the sequences for a homogeneous model; for an
inhomogeneous model this parameter should be null
or an array of size 0.
DataSet containing the artificial sequence(s)
NotTrainedException - if the model is not trained yet
Exception - if the emission did not succeedDataSet
public double getLogPriorTerm()
throws Exception
StatisticalModel
Exception - if something went wrong
public double getLogProbFor(Sequence sequence,
int startpos,
int endpos)
throws NotTrainedException,
Exception
StatisticalModelStatisticalModel.getLogProbFor(Sequence, int) by the fact, that the model could be
e.g. homogeneous and therefore the length of the sequences, whose
probability should be returned, is not fixed. Additionally, the end
position of the part of the given sequence is given and the probability
of the part from position startpos to endpos
(inclusive) should be returned.
length and the alphabets define the type of
data that can be modeled and therefore both has to be checked.
sequence - the given sequencestartpos - the start position within the given sequenceendpos - the last position to be taken into account
NotTrainedException - if the model is not trained yet
Exception - if the sequence could not be handled (e.g.
startpos > , endpos
> sequence.length, ...) by the modelpublic NumericalResultSet getNumericalCharacteristics()
SequenceScoreSequenceScore.getCharacteristics().
public String getStructure()
throws NotTrainedException
InhomogeneousDGTrainSMString representation of the underlying graph.
getStructure in class InhomogeneousDGTrainSMString representation of the underlying graph
NotTrainedException - if the structure is not set, this can only be the case if the
model is not trainedpublic String toString()
TrainableStatisticalModelString.
toString in interface TrainableStatisticalModeltoString in class DiscreteGraphicalTrainSMString
protected static boolean checkAcyclic(int length,
int[][] graph)
length - the sequence length (which corresponds to the number of nodes
in the graph)graph - the specified graph
true if the given graph is acyclic,
false otherwiseprotected void createConstraints(int[][] structure)
structure - the specified structure
protected void drawParameters(DataSet data,
double[] weights)
throws Exception
data - the given dataweights - the weights for the sequences in the data
Exception - if something went wrong while counting or drawingConstraintManager.countInhomogeneous(de.jstacs.data.AlphabetContainer,
int, DataSet, double[], boolean,
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint...),
ConstraintManager.drawFreqs(double, InhCondProb...)
protected void estimateParameters(DataSet data,
double[] weights)
throws Exception
data - the dataweights - the weights for the sequences in the data
Exception - if something went wrong while counting or estimatingdrawParameters(DataSet, double[])protected StringBuffer getFurtherModelInfos()
DiscreteGraphicalTrainSMStringBuffer.
getFurtherModelInfos in class DiscreteGraphicalTrainSMDiscreteGraphicalTrainSM.toXML()
protected void setFurtherModelInfos(StringBuffer xml)
throws NonParsableException
DiscreteGraphicalTrainSMStringBuffer.
setFurtherModelInfos in class DiscreteGraphicalTrainSMxml - contains the model information like parameters of the
distribution etc. in XML format
NonParsableException - if the StringBuffer could not be parsedDiscreteGraphicalTrainSM.fromXML(StringBuffer)
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||