|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
public final class MarkovRandomFieldDiffSM
This class implements the scoring function for any MRF (Markov Random Field).
| Field Summary |
|---|
| Fields inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
|---|
alphabets, length, r |
| Fields inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
|---|
UNKNOWN |
| Constructor Summary | |
|---|---|
MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
double ess,
String constr)
This is the main constructor that creates an instance of a MarkovRandomFieldDiffSM. |
|
MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
String constr)
This constructor creates an instance of a MarkovRandomFieldDiffSM with
equivalent sample size (ess) 0. |
|
MarkovRandomFieldDiffSM(StringBuffer source)
This is the constructor for the interface Storable. |
|
| Method Summary | |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
MarkovRandomFieldDiffSM |
clone()
Creates a clone (deep copy) of the current DifferentiableSequenceScore
instance. |
DataSet |
emitDataSet(int numberOfSequences,
int... seqLength)
This method returns a DataSet object containing artificial
sequence(s). |
protected void |
fromXML(StringBuffer representation)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e. |
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ... |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to |
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
Returns the logarithmic score for a Sequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations. |
double |
getLogScoreFor(Sequence seq,
int start)
Returns the logarithmic score for the Sequence seq
beginning at position start in the Sequence. |
int |
getNumberOfParameters()
Returns the number of parameters in this DifferentiableSequenceScore. |
int[][] |
getSamplingGroups(int parameterOffset)
Returns groups of indexes of parameters that shall be drawn together in a sampling procedure |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the DifferentiableSequenceScore. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the DifferentiableSequenceScore randomly. |
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized. |
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model. |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of params between start and
start + |
String |
toString(NumberFormat nf)
This method returns a String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel |
|---|
getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalized, isNormalized |
| Methods inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
|---|
getAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfRecommendedStarts, getNumberOfStarts, getNumericalCharacteristics |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel |
|---|
isNormalized |
| Methods inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
|---|
getInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfRecommendedStarts |
| Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel |
|---|
getLogProbFor, getLogProbFor, getLogProbFor, getMaximalMarkovOrder |
| Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
|---|
getAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics |
| Constructor Detail |
|---|
public MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
String constr)
MarkovRandomFieldDiffSM with
equivalent sample size (ess) 0.
alphabets - the AlphabetContainerlength - the length of the sequences and accordingly the modelconstr - the constraints that are used for the model, see
ConstraintManager.extract(int, String)MarkovRandomFieldDiffSM(AlphabetContainer, int,
double, String)
public MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
double ess,
String constr)
MarkovRandomFieldDiffSM.
alphabets - the AlphabetContainerlength - the length of the sequences and accordingly the modeless - the equivalent sample size (ess)constr - the constraints that are used for the model, see
ConstraintManager.extract(int, String)
public MarkovRandomFieldDiffSM(StringBuffer source)
throws NonParsableException
Storable.
Creates a new MarkovRandomFieldDiffSM out of a StringBuffer as
returned by toXML().
source - the XML representation as StringBuffer
NonParsableException - if the XML representation could not be parsed| Method Detail |
|---|
protected void fromXML(StringBuffer representation)
throws NonParsableException
AbstractDifferentiableSequenceScoreStorable
interface to create a scoring function from a StringBuffer.
fromXML in class AbstractDifferentiableSequenceScorerepresentation - the XML representation as StringBuffer
NonParsableException - if the StringBuffer could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)
public MarkovRandomFieldDiffSM clone()
throws CloneNotSupportedException
DifferentiableSequenceScoreDifferentiableSequenceScore
instance.
clone in interface DifferentiableSequenceScoreclone in interface SequenceScoreclone in class AbstractDifferentiableStatisticalModelDifferentiableSequenceScore
CloneNotSupportedException - if something went wrong while cloning the
DifferentiableSequenceScore
public double getLogScoreFor(Sequence seq,
int start)
SequenceScoreSequence seq
beginning at position start in the Sequence.
getLogScoreFor in interface SequenceScoreseq - the Sequencestart - the start position in the Sequence
Sequence
public double getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
DifferentiableSequenceScoreSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation in interface DifferentiableSequenceScoreseq - the Sequencestart - the start position in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zeropartialDer - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zero
Sequencepublic int getNumberOfParameters()
DifferentiableSequenceScoreDifferentiableSequenceScore. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN.
getNumberOfParameters in interface DifferentiableSequenceScoreDifferentiableSequenceScoreDifferentiableSequenceScore.UNKNOWNpublic String getInstanceName()
SequenceScore
getInstanceName in interface SequenceScore
public void setParameters(double[] params,
int start)
DifferentiableSequenceScoreparams between start and
start + DifferentiableSequenceScore.getNumberOfParameters() - 1
setParameters in interface DifferentiableSequenceScoreparams - the new parametersstart - the start index in paramspublic String toString(NumberFormat nf)
SequenceScoreString representation of the instance.
toString in interface SequenceScorenf - the NumberFormat for the String representation of parameters or probabilities
String representation of the instancepublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.
toXML in interface Storable
public void initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore.
initializeFunction in interface DifferentiableSequenceScoreindex - the index of the class the DifferentiableSequenceScore modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the data setsweights - the weights of the sequences in the data sets
Exception - if something went wrong
public void initializeFunctionRandomly(boolean freeParams)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore randomly. It has to
create the underlying structure of the DifferentiableSequenceScore.
initializeFunctionRandomly in interface DifferentiableSequenceScorefreeParams - indicates whether the (reduced) parameterization is used
Exception - if something went wrongpublic double getLogNormalizationConstant()
DifferentiableStatisticalModel
getLogNormalizationConstant in interface DifferentiableStatisticalModel
public double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
DifferentiableStatisticalModelparameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/DifferentiableStatisticalModel_LaTeXilb9_1.png)
getLogPartialNormalizationConstant in interface DifferentiableStatisticalModelparameterIndex - the index of the parameter
Exception - if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()public double getESS()
DifferentiableStatisticalModel
getESS in interface DifferentiableStatisticalModelpublic int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModelindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
getSizeOfEventSpaceForRandomVariablesOfParameter in interface DifferentiableStatisticalModelindex - the index of the parameter
public double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.
getLogPriorTerm in interface DifferentiableStatisticalModelgetLogPriorTerm in interface StatisticalModelDifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior ).DifferentiableStatisticalModel.getESS(),
DifferentiableStatisticalModel.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad,
int start)
DifferentiableStatisticalModelDifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.
addGradientOfLogPriorTerm in interface DifferentiableStatisticalModelgrad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredDifferentiableStatisticalModel.getLogPriorTerm()public double[] getCurrentParameterValues()
DifferentiableSequenceScoredouble array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.
getCurrentParameterValues in interface DifferentiableSequenceScorepublic boolean isInitialized()
SequenceScoreSequenceScore.getLogScoreFor(Sequence).
isInitialized in interface SequenceScoretrue if the instance is initialized, false
otherwise
public boolean modify(int offsetLeft,
int offsetRight)
MutableoffsetLeft
and offsetRight define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.
modify in interface MutableoffsetLeft - the offset on the left sideoffsetRight - the offset on the right side
true if the motif model was modified otherwise
falsepublic int[][] getSamplingGroups(int parameterOffset)
SamplingDifferentiableStatisticalModel
getSamplingGroups in interface SamplingDifferentiableStatisticalModelparameterOffset - a global offset on the parameter indexes
parameterOffset.
public DataSet emitDataSet(int numberOfSequences,
int... seqLength)
throws NotTrainedException,
Exception
StatisticalModelDataSet object containing artificial
sequence(s).
emitDataSet( int n, int l ) should return a data set with
n sequences of length l.
emitDataSet( int n, int[] l ) should return a data set with
n sequences which have a sequence length corresponding to
the entry in the given array l.
emitDataSet( int n ) and
emitDataSet( int n, null ) should return a data set with
n sequences of length of the model (
SequenceScore.getLength()).
Exception.
emitDataSet in interface StatisticalModelemitDataSet in class AbstractDifferentiableStatisticalModelnumberOfSequences - the number of sequences that should be contained in the
returned data setseqLength - the length of the sequences for a homogeneous model; for an
inhomogeneous model this parameter should be null
or an array of size 0.
DataSet containing the artificial sequence(s)
NotTrainedException - if the model is not trained yet
Exception - if the emission did not succeedDataSet
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||