|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
public abstract class HomogeneousTrainSM
This class implements homogeneous models of arbitrary order.
HomogeneousTrainSMParameterSet| Nested Class Summary | |
|---|---|
protected class |
HomogeneousTrainSM.HomCondProb
This class handles the (conditional) probabilities of a homogeneous model in a fast way. |
| Field Summary | |
|---|---|
protected byte |
order
The order of the model. |
protected int[] |
powers
The powers of the alphabet length. |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
|---|
params, trained |
| Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
|---|
alphabets, length |
| Constructor Summary | |
|---|---|
HomogeneousTrainSM(HomogeneousTrainSMParameterSet params)
Creates a homogeneous model from a parameter set. |
|
HomogeneousTrainSM(StringBuffer stringBuff)
The standard constructor for the interface Storable. |
|
| Method Summary | |
|---|---|
protected void |
check(Sequence sequence,
int startpos,
int endpos)
Checks some constraints, these are in general conditions on the AlphabetContainer of a (sub)Sequence
between startpos und endpos. |
protected int |
chooseFromDistr(Constraint distr,
int start,
int end,
double randNo)
Chooses a value in [0,end-start] according to the
distribution encoded in the frequencies of distr between the
indices start and end. |
protected HomogeneousTrainSM.HomCondProb[] |
cloneHomProb(HomogeneousTrainSM.HomCondProb[] p)
Clones the given array of conditional probabilities. |
DataSet |
emitDataSet(int no,
int... length)
Creates a DataSet of a given number of Sequences from a
trained homogeneous model. |
double |
getLogProbFor(Sequence sequence,
int startpos,
int endpos)
Returns the logarithm of the probability of (a part of) the given sequence given the model. |
byte |
getMaximalMarkovOrder()
This method returns the maximal used Markov order, if possible. |
NumericalResultSet |
getNumericalCharacteristics()
Returns the subset of numerical values that are also returned by SequenceScore.getCharacteristics(). |
protected abstract Sequence |
getRandomSequence(Random r,
int length)
This method creates a random Sequence from a trained homogeneous
model. |
protected abstract double |
logProbFor(Sequence sequence,
int startpos,
int endpos)
This method computes the logarithm of the probability of the given Sequence in the given interval. |
protected void |
set(DGTrainSMParameterSet params,
boolean trained)
Sets the parameters as internal parameters and does some essential computations. |
void |
train(DataSet[] data)
Trains the homogeneous model on all given DataSets. |
abstract void |
train(DataSet[] data,
double[][] weights)
Trains the homogeneous model using an array of weighted DataSets. |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
|---|
clone, fromXML, getCurrentParameterSet, getDescription, getESS, getFurtherModelInfos, getXMLTag, isInitialized, setFurtherModelInfos, toString, toXML |
| Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
|---|
getAlphabetContainer, getCharacteristics, getLength, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, toString, train |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.trainable.TrainableStatisticalModel |
|---|
train |
| Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel |
|---|
getLogPriorTerm |
| Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
|---|
getInstanceName |
| Field Detail |
|---|
protected int[] powers
protected byte order
| Constructor Detail |
|---|
public HomogeneousTrainSM(HomogeneousTrainSMParameterSet params)
throws CloneNotSupportedException,
IllegalArgumentException,
NonParsableException
params - the parameter set
CloneNotSupportedException - if the parameter set could not be cloned
IllegalArgumentException - if the parameter set is not instantiated
NonParsableException - if the parameter set is not parsableHomogeneousTrainSMParameterSet,
DiscreteGraphicalTrainSM.DiscreteGraphicalTrainSM(DGTrainSMParameterSet)
public HomogeneousTrainSM(StringBuffer stringBuff)
throws NonParsableException
Storable.
Creates a new HomogeneousTrainSM out of its XML representation.
stringBuff - the XML representation as StringBuffer
NonParsableException - if the HomogeneousTrainSM could not be reconstructed
out of the XML representation (the StringBuffer could
not be parsed)Storable,
DiscreteGraphicalTrainSM.DiscreteGraphicalTrainSM(StringBuffer)| Method Detail |
|---|
public final DataSet emitDataSet(int no,
int... length)
throws NotTrainedException,
IllegalArgumentException,
EmptyDataSetException,
WrongAlphabetException,
WrongSequenceTypeException
DataSet of a given number of Sequences from a
trained homogeneous model.
emitDataSet in interface StatisticalModelemitDataSet in class AbstractTrainableStatisticalModelno - the number of Sequences that should be in the
DataSetlength - the length of all Sequences or an array of lengths
with the Sequence with index i having
length length[i]
DataSet
NotTrainedException - if the model was not trained
IllegalArgumentException - if the dimension of length is neither 1 nor
no
EmptyDataSetException - if no == 0
WrongSequenceTypeException - if the Sequence type is not suitable (for the
AlphabetContainer)
WrongAlphabetException - if something is wrong with the alphabetDataSet.DataSet(String, Sequence...)
protected abstract Sequence getRandomSequence(Random r,
int length)
throws WrongAlphabetException,
WrongSequenceTypeException
Sequence from a trained homogeneous
model.
r - the random generatorlength - the length of the Sequence
Sequence
WrongSequenceTypeException - if the Sequence type is not suitable (for the
AlphabetContainer)
WrongAlphabetException - if something is wrong with the alphabetpublic byte getMaximalMarkovOrder()
StatisticalModel
getMaximalMarkovOrder in interface StatisticalModelgetMaximalMarkovOrder in class AbstractTrainableStatisticalModel
public NumericalResultSet getNumericalCharacteristics()
throws Exception
SequenceScoreSequenceScore.getCharacteristics().
Exception - if some of the characteristics could not be defined
public final double getLogProbFor(Sequence sequence,
int startpos,
int endpos)
throws NotTrainedException,
Exception
StatisticalModelStatisticalModel.getLogProbFor(Sequence, int) by the fact, that the model could be
e.g. homogeneous and therefore the length of the sequences, whose
probability should be returned, is not fixed. Additionally, the end
position of the part of the given sequence is given and the probability
of the part from position startpos to endpos
(inclusive) should be returned.
length and the alphabets define the type of
data that can be modeled and therefore both has to be checked.
sequence - the given sequencestartpos - the start position within the given sequenceendpos - the last position to be taken into account
NotTrainedException - if the model is not trained yet
Exception - if the sequence could not be handled (e.g.
startpos > , endpos
> sequence.length, ...) by the model
public void train(DataSet[] data)
throws Exception
DataSets.
data - the given DataSets
Exception - if something went wrongtrain(DataSet[], double[][])
public abstract void train(DataSet[] data,
double[][] weights)
throws Exception
DataSets.
The Sequence weights in weights[i] are for the
DataSet in data[i].
data - the given DataSetsweights - the weights
Exception - if something went wrong, furthermore data.length
has to be weights.length
protected void set(DGTrainSMParameterSet params,
boolean trained)
throws CloneNotSupportedException,
NonParsableException
DiscreteGraphicalTrainSMfromParameterSet-methods.
set in class DiscreteGraphicalTrainSMparams - the new ParameterSettrained - indicates if the model is trained or not
CloneNotSupportedException - if the parameter set could not be cloned
NonParsableException - if the parameters of the model could not be parsed
protected void check(Sequence sequence,
int startpos,
int endpos)
throws NotTrainedException,
IllegalArgumentException
AlphabetContainer of a (sub)Sequence
between startpos und endpos.
check in class DiscreteGraphicalTrainSMsequence - the Sequencestartpos - the start position within the Sequenceendpos - the end position within the Sequence
NotTrainedException - if the model is not trained
IllegalArgumentException - if some arguments are wrongDiscreteGraphicalTrainSM.check(Sequence, int, int)
protected final int chooseFromDistr(Constraint distr,
int start,
int end,
double randNo)
[0,end-start] according to the
distribution encoded in the frequencies of distr between the
indices start and end.
distr is not changed in the process.
distr - the distributionstart - the start indexend - the end indexrandNo - a random number in [0,1]
Constraint.getFreq(int)
protected abstract double logProbFor(Sequence sequence,
int startpos,
int endpos)
Sequence in the given interval. The method is only used in
StatisticalModel.getLogProbFor(Sequence, int, int) after
the method check(Sequence, int, int) has been
invoked.
sequence - the Sequencestartpos - the start position within the Sequenceendpos - the end position within the Sequence
check(Sequence, int, int),
StatisticalModel.getLogProbFor(Sequence, int, int)protected HomogeneousTrainSM.HomCondProb[] cloneHomProb(HomogeneousTrainSM.HomCondProb[] p)
p - the original conditional probabilities
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||