|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
public class StructureLearner
This class can be used to learn the structure of any discrete model.
| Nested Class Summary | |
|---|---|
static class |
StructureLearner.LearningType
This enum defines the different types of learning that are
possible with the StructureLearner. |
static class |
StructureLearner.ModelType
This enum defines the different types of models that can be
learned with the StructureLearner. |
| Constructor Summary | |
|---|---|
StructureLearner(AlphabetContainer con,
int length)
Creates a StructureLearner with equivalent sample
size (ess) = 0. |
|
StructureLearner(AlphabetContainer con,
int length,
double ess)
Creates a new StructureLearner for a given
AlphabetContainer, a given length and a given equivalent
sample size (ess). |
|
| Method Summary | |
|---|---|
AlphabetContainer |
getAlphabetContainer()
This method returns the AlphabetContainer of the
StructureLearner. |
double |
getEss()
This method returns the ess (equivalent sample size) of the StructureLearner. |
int[][] |
getStructure(DataSet data,
double[] weights,
StructureLearner.ModelType model,
byte order,
StructureLearner.LearningType method)
This method finds the optimal structure of a model by using a given learning method (in some sense). |
static int[][] |
getStructure(Tensor t,
StructureLearner.ModelType model,
byte order)
This method can be used to determine the optimal structure of a model. |
SymmetricTensor |
getTensor(DataSet data,
double[] weights,
byte order,
StructureLearner.LearningType method)
This method can be used to compute a Tensor that can be used to
determine the optimal structure. |
void |
setESS(double ess)
This method sets the ess (equivalent sample size) of the StructureLearner. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public StructureLearner(AlphabetContainer con,
int length,
double ess)
throws IllegalArgumentException
StructureLearner for a given
AlphabetContainer, a given length and a given equivalent
sample size (ess).
con - the alphabets this instance should uselength - the lengthess - the ess (equivalent sample size, has to
be non-negative)
IllegalArgumentException - if the AlphabetContainer is not discrete, the length
is not matching with the AlphabetContainer or the ess
is below 0
public StructureLearner(AlphabetContainer con,
int length)
throws IllegalArgumentException
StructureLearner with equivalent sample
size (ess) = 0.
con - the alphabets this instance should uselength - the length
IllegalArgumentException - if the AlphabetContainer is not discrete or the
length is not matching with the AlphabetContainerStructureLearner(AlphabetContainer, int, double)| Method Detail |
|---|
public AlphabetContainer getAlphabetContainer()
AlphabetContainer of the
StructureLearner.
AlphabetContainer of the StructureLearnerpublic double getEss()
StructureLearner.
StructureLearner
public void setESS(double ess)
throws IllegalArgumentException
StructureLearner.
ess - the ess of the StructureLearner
IllegalArgumentException - if ess < 0
public int[][] getStructure(DataSet data,
double[] weights,
StructureLearner.ModelType model,
byte order,
StructureLearner.LearningType method)
throws Exception
data - the DataSetweights - the weightsmodel - the kind of modelorder - the Markov ordermethod - the learning method
Exception - if something went wronggetTensor(DataSet, double[], byte, LearningType),
getStructure(Tensor, ModelType, byte)
public static int[][] getStructure(Tensor t,
StructureLearner.ModelType model,
byte order)
throws Exception
t - the tensor containing all relevant weights (includes the
learning method for the structure)model - the model typeorder - the model order
Exception - if something in the algorithm went wronggetTensor(DataSet, double[], byte, LearningType)
public SymmetricTensor getTensor(DataSet data,
double[] weights,
byte order,
StructureLearner.LearningType method)
throws IllegalArgumentException,
WrongAlphabetException
Tensor that can be used to
determine the optimal structure.
data - the dataweights - the weightsorder - the Markov ordermethod - the learning type
IllegalArgumentException - if something is wrong with the given arguments
WrongAlphabetException - if the AlphabetContainer of the data is not correctgetStructure(Tensor, ModelType, byte)
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||