public class CyclicMarkovModelDiffSM extends AbstractVariableLengthDiffSM implements SamplingDifferentiableStatisticalModel
alphabets, length, rUNKNOWN| Constructor and Description |
|---|
CyclicMarkovModelDiffSM(AlphabetContainer alphabets,
double[] frameHyper,
double[][][] hyper,
boolean plugIn,
boolean optimize,
int starts,
int initFrame)
This constructor allows to create an instance with specific hyper-parameters for all conditional distributions.
|
CyclicMarkovModelDiffSM(AlphabetContainer alphabets,
int order,
int period,
double classEss,
double[] sumOfHyperParams,
boolean plugIn,
boolean optimize,
int starts,
int initFrame)
The main constructor.
|
CyclicMarkovModelDiffSM(StringBuffer source)
This is the constructor for
Storable. |
| Modifier and Type | Method and Description |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
CyclicMarkovModelDiffSM |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
static double[][][] |
getHyperParams(int alphabetSize,
int length,
double ess,
double[] frameProb,
double[][][] prob)
This method returns the hyper-parameters for a model given some a-priori probabilities.
|
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogNormalizationConstant(int length)
This method returns the logarithm of the normalization constant for a given sequence
length.
|
double |
getLogPartialNormalizationConstant(int parameterIndex,
int length)
This method returns the logarithm of the partial normalization constant for a given
parameter index and a sequence length.
|
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
int end,
IntList indices,
DoubleList dList)
|
double |
getLogScoreFor(Sequence seq,
int start,
int end)
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore. |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts.
|
int[][] |
getSamplingGroups(int parameterOffset)
Returns groups of indexes of parameters that shall be drawn
together in a sampling procedure
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized
to 1 or not.
|
void |
setFrameParameterOptimization(boolean optimize)
This method enables the user to choose whether the frame parameters should be optimized or not.
|
void |
setParameterOptimization(boolean optimize)
This method enables the user to choose whether the parameters should be optimized or not.
|
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
void |
setStatisticForHyperparameters(int[] length,
double[] weight)
This method sets the hyperparameters for the model parameters by
evaluating the given statistic.
|
String |
toString(NumberFormat nf)
This method returns a
String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
getLogNormalizationConstant, getLogPartialNormalizationConstant, getLogScoreAndPartialDerivation, getLogScoreForemitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalizedgetAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreFor, getNumberOfStarts, getNumericalCharacteristics, toStringequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetLogNormalizationConstant, getLogPartialNormalizationConstantgetInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivationemitDataSet, getLogProbFor, getLogProbFor, getLogProbFor, getMaximalMarkovOrdergetAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristicspublic CyclicMarkovModelDiffSM(AlphabetContainer alphabets, int order, int period, double classEss, double[] sumOfHyperParams, boolean plugIn, boolean optimize, int starts, int initFrame)
alphabets - the alphabet containerorder - the oder of the model (has to be non-negative)period - the periodclassEss - the ess of the classsumOfHyperParams - the sum of the hyper parameter for each order (length has to be order+1, each entry has to be non-negative), the sum also sums over the periodplugIn - a switch which enables to used the MAP-parameters as plug-in parametersoptimize - a switch which enables to optimize or fix the parametersstarts - the number of recommended startsinitFrame - the frame which should be used for plug-in initialization, negative for random initializationgetHyperParams(int, int, double, double[], double[][][]),
CyclicMarkovModelDiffSM(AlphabetContainer, double[], double[][][], boolean, boolean, int, int)public CyclicMarkovModelDiffSM(AlphabetContainer alphabets, double[] frameHyper, double[][][] hyper, boolean plugIn, boolean optimize, int starts, int initFrame)
alphabets - the alphabet containerframeHyper - the hyper-parameters for the frame, the length of this array also defines the period of the modelhyper - the hyper-parameters for each frameplugIn - a switch which enables to used the MAP-parameters as plug-in parametersoptimize - a switch which enables to optimize or fix the parametersstarts - the number of recommended startsinitFrame - the frame which should be used for plug-in initialization, negative for random initializationpublic CyclicMarkovModelDiffSM(StringBuffer source) throws NonParsableException
Storable.source - the xml representationNonParsableException - if the representation could not be parsed.public static double[][][] getHyperParams(int alphabetSize,
int length,
double ess,
double[] frameProb,
double[][][] prob)
alphabetSize - the size of the alphabetlength - the expected sequence lengthess - the equivalent sample size (ess) of the modelframeProb - the a-priori probabilities for each frameprob - the a-priori probabilities for each frame and orderpublic CyclicMarkovModelDiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScoreDifferentiableSequenceScore
instance.clone in interface DifferentiableSequenceScoreclone in interface SequenceScoreclone in class AbstractDifferentiableStatisticalModelDifferentiableSequenceScoreCloneNotSupportedException - if something went wrong while cloning the
DifferentiableSequenceScorepublic String getInstanceName()
SequenceScoregetInstanceName in interface SequenceScorepublic double getLogScoreFor(Sequence seq, int start, int end)
SequenceScoregetLogScoreFor in interface SequenceScoregetLogScoreFor in interface VariableLengthDiffSMgetLogScoreFor in class AbstractVariableLengthDiffSMseq - the Sequencestart - the start position in the Sequenceend - the end position (inclusive) in the SequenceSequencepublic double getLogScoreAndPartialDerivation(Sequence seq, int start, int end, IntList indices, DoubleList dList)
DifferentiableSequenceScoreSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.getLogScoreAndPartialDerivation in interface DifferentiableSequenceScoregetLogScoreAndPartialDerivation in interface VariableLengthDiffSMgetLogScoreAndPartialDerivation in class AbstractVariableLengthDiffSMseq - the Sequencestart - the start position in the Sequenceend - the end position (inclusive) in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zerodList - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zeroSequencepublic int getNumberOfParameters()
DifferentiableSequenceScoreDifferentiableSequenceScore. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN.getNumberOfParameters in interface DifferentiableSequenceScoreDifferentiableSequenceScoreDifferentiableSequenceScore.UNKNOWNpublic void setParameters(double[] params,
int start)
DifferentiableSequenceScoreparams between start and
start + DifferentiableSequenceScore.getNumberOfParameters() - 1setParameters in interface DifferentiableSequenceScoreparams - the new parametersstart - the start index in paramspublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.public double[] getCurrentParameterValues()
DifferentiableSequenceScoredouble array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.getCurrentParameterValues in interface DifferentiableSequenceScorepublic void initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
DifferentiableSequenceScoreDifferentiableSequenceScore.initializeFunction in interface DifferentiableSequenceScoreindex - the index of the class the DifferentiableSequenceScore modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the data setsweights - the weights of the sequences in the data setspublic void initializeFunctionRandomly(boolean freeParams)
DifferentiableSequenceScoreDifferentiableSequenceScore randomly. It has to
create the underlying structure of the DifferentiableSequenceScore.initializeFunctionRandomly in interface DifferentiableSequenceScorefreeParams - indicates whether the (reduced) parameterization is usedprotected void fromXML(StringBuffer xml) throws NonParsableException
AbstractDifferentiableSequenceScoreStorable
interface to create a scoring function from a StringBuffer.fromXML in class AbstractDifferentiableSequenceScorexml - the XML representation as StringBufferNonParsableException - if the StringBuffer could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModelindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...getSizeOfEventSpaceForRandomVariablesOfParameter in interface DifferentiableStatisticalModelindex - the index of the parameterpublic double getLogNormalizationConstant(int length)
VariableLengthDiffSMgetLogNormalizationConstant in interface VariableLengthDiffSMlength - the sequence lengthDifferentiableStatisticalModel.getLogNormalizationConstant()public double getLogPartialNormalizationConstant(int parameterIndex,
int length)
throws Exception
VariableLengthDiffSMgetLogPartialNormalizationConstant in interface VariableLengthDiffSMparameterIndex - the index of the parameterlength - the sequence lengthException - if something went wrongDifferentiableStatisticalModel.getLogPartialNormalizationConstant(int)public double getESS()
DifferentiableStatisticalModelgetESS in interface DifferentiableStatisticalModelpublic String toString(NumberFormat nf)
SequenceScoreString representation of the instance.toString in interface SequenceScorenf - the NumberFormat for the String representation of parameters or probabilitiesString representation of the instancepublic double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.getLogPriorTerm in interface DifferentiableStatisticalModelgetLogPriorTerm in interface StatisticalModelDifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior ).DifferentiableStatisticalModel.getESS(),
DifferentiableStatisticalModel.getLogNormalizationConstant()public void addGradientOfLogPriorTerm(double[] grad,
int start)
DifferentiableStatisticalModelDifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.addGradientOfLogPriorTerm in interface DifferentiableStatisticalModelgrad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredDifferentiableStatisticalModel.getLogPriorTerm()public boolean isNormalized()
DifferentiableStatisticalModelfalse.isNormalized in interface DifferentiableStatisticalModelisNormalized in class AbstractDifferentiableStatisticalModeltrue if the implemented score is already normalized
to 1, false otherwisepublic boolean isInitialized()
SequenceScoreSequenceScore.getLogScoreFor(Sequence).isInitialized in interface SequenceScoretrue if the instance is initialized, false
otherwisepublic int getNumberOfRecommendedStarts()
DifferentiableSequenceScoregetNumberOfRecommendedStarts in interface DifferentiableSequenceScoregetNumberOfRecommendedStarts in class AbstractDifferentiableSequenceScorepublic void setParameterOptimization(boolean optimize)
optimize - the switch for optimization of the parameterspublic void setFrameParameterOptimization(boolean optimize)
optimize - the switch for optimization of the frame parameterspublic void setStatisticForHyperparameters(int[] length,
double[] weight)
throws Exception
VariableLengthDiffSMlength) and how often (
weight) they have been seen.setStatisticForHyperparameters in interface VariableLengthDiffSMlength - the non-negative lengths of the sequencesweight - the non-negative weight for the corresponding sequenceException - if something went wrongMutablepublic int[][] getSamplingGroups(int parameterOffset)
SamplingDifferentiableStatisticalModelgetSamplingGroups in interface SamplingDifferentiableStatisticalModelparameterOffset - a global offset on the parameter indexesparameterOffset.