public interface DifferentiableStatisticalModel extends DifferentiableSequenceScore, StatisticalModel
DifferentiableSequenceScores.
For creating simple differentiable statistical models please check DifferentiableStatisticalModelFactory.DifferentiableStatisticalModelFactoryUNKNOWN| Modifier and Type | Method and Description |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
getLogPriorTerm() for each
parameter of this model. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space.
|
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized
to 1 or not.
|
clone, getCurrentParameterValues, getInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfParameters, getNumberOfRecommendedStarts, initializeFunction, initializeFunctionRandomly, setParametersemitDataSet, getLogProbFor, getLogProbFor, getLogProbFor, getMaximalMarkovOrdergetAlphabetContainer, getCharacteristics, getInstanceName, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics, isInitialized, toStringint getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
index, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...index - the index of the parameterdouble getLogNormalizationConstant()
double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
parameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/DifferentiableStatisticalModel_LaTeXilb9_1.png)
parameterIndex - the index of the parameterException - if something went wrong with the normalizationgetLogNormalizationConstant()double getLogPriorTerm()
getESS() * getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.getLogPriorTerm in interface StatisticalModelgetESS() * getLogNormalizationConstant() + Math.log( prior ).getESS(),
getLogNormalizationConstant()void addGradientOfLogPriorTerm(double[] grad,
int start)
throws Exception
getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.grad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredException - if something went wrong with the computing of the gradientsgetLogPriorTerm()boolean isNormalized()
false.true if the implemented score is already normalized
to 1, false otherwisedouble getESS()