public final class MarkovRandomFieldDiffSM extends AbstractDifferentiableStatisticalModel implements Mutable, SamplingDifferentiableStatisticalModel
alphabets, length, rUNKNOWN| Constructor and Description |
|---|
MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
double ess,
String constr)
This is the main constructor that creates an instance of a
MarkovRandomFieldDiffSM. |
MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
String constr)
This constructor creates an instance of a
MarkovRandomFieldDiffSM with
equivalent sample size (ess) 0. |
MarkovRandomFieldDiffSM(StringBuffer source)
This is the constructor for the interface
Storable. |
| Modifier and Type | Method and Description |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
MarkovRandomFieldDiffSM |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
DataSet |
emitDataSet(int numberOfSequences,
int... seqLength)
This method returns a
DataSet object containing artificial
sequence(s). |
protected void |
fromXML(StringBuffer representation)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer. |
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space.
|
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
|
double |
getLogScoreFor(Sequence seq,
int start)
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore. |
int[][] |
getSamplingGroups(int parameterOffset)
Returns groups of indexes of parameters that shall be drawn
together in a sampling procedure
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model.
|
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
String |
toString(NumberFormat nf)
This method returns a
String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalized, isNormalizedgetAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfRecommendedStarts, getNumberOfStarts, getNumericalCharacteristics, toStringequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitisNormalizedgetInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfRecommendedStartsgetLogProbFor, getLogProbFor, getLogProbFor, getMaximalMarkovOrdergetAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristicspublic MarkovRandomFieldDiffSM(AlphabetContainer alphabets, int length, String constr)
MarkovRandomFieldDiffSM with
equivalent sample size (ess) 0.alphabets - the AlphabetContainerlength - the length of the sequences and accordingly the modelconstr - the constraints that are used for the model, see
ConstraintManager.extract(int, String)MarkovRandomFieldDiffSM(AlphabetContainer, int,
double, String)public MarkovRandomFieldDiffSM(AlphabetContainer alphabets, int length, double ess, String constr)
MarkovRandomFieldDiffSM.alphabets - the AlphabetContainerlength - the length of the sequences and accordingly the modeless - the equivalent sample size (ess)constr - the constraints that are used for the model, see
ConstraintManager.extract(int, String)public MarkovRandomFieldDiffSM(StringBuffer source) throws NonParsableException
Storable.
Creates a new MarkovRandomFieldDiffSM out of a StringBuffer as
returned by toXML().source - the XML representation as StringBufferNonParsableException - if the XML representation could not be parsedprotected void fromXML(StringBuffer representation) throws NonParsableException
AbstractDifferentiableSequenceScoreStorable
interface to create a scoring function from a StringBuffer.fromXML in class AbstractDifferentiableSequenceScorerepresentation - the XML representation as StringBufferNonParsableException - if the StringBuffer could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)public MarkovRandomFieldDiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScoreDifferentiableSequenceScore
instance.clone in interface DifferentiableSequenceScoreclone in interface SequenceScoreclone in class AbstractDifferentiableStatisticalModelDifferentiableSequenceScoreCloneNotSupportedException - if something went wrong while cloning the
DifferentiableSequenceScorepublic double getLogScoreFor(Sequence seq, int start)
SequenceScoregetLogScoreFor in interface SequenceScoreseq - the Sequencestart - the start position in the SequenceSequencepublic double getLogScoreAndPartialDerivation(Sequence seq, int start, IntList indices, DoubleList partialDer)
DifferentiableSequenceScoreSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.getLogScoreAndPartialDerivation in interface DifferentiableSequenceScoreseq - the Sequencestart - the start position in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zeropartialDer - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zeroSequencepublic int getNumberOfParameters()
DifferentiableSequenceScoreDifferentiableSequenceScore. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN.getNumberOfParameters in interface DifferentiableSequenceScoreDifferentiableSequenceScoreDifferentiableSequenceScore.UNKNOWNpublic String getInstanceName()
SequenceScoregetInstanceName in interface SequenceScorepublic void setParameters(double[] params,
int start)
DifferentiableSequenceScoreparams between start and
start + DifferentiableSequenceScore.getNumberOfParameters() - 1setParameters in interface DifferentiableSequenceScoreparams - the new parametersstart - the start index in paramspublic String toString(NumberFormat nf)
SequenceScoreString representation of the instance.toString in interface SequenceScorenf - the NumberFormat for the String representation of parameters or probabilitiesString representation of the instancepublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.public void initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore.initializeFunction in interface DifferentiableSequenceScoreindex - the index of the class the DifferentiableSequenceScore modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the data setsweights - the weights of the sequences in the data setsException - if something went wrongpublic void initializeFunctionRandomly(boolean freeParams)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore randomly. It has to
create the underlying structure of the DifferentiableSequenceScore.initializeFunctionRandomly in interface DifferentiableSequenceScorefreeParams - indicates whether the (reduced) parameterization is usedException - if something went wrongpublic double getLogNormalizationConstant()
DifferentiableStatisticalModelgetLogNormalizationConstant in interface DifferentiableStatisticalModelpublic double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
DifferentiableStatisticalModelparameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/DifferentiableStatisticalModel_LaTeXilb9_1.png)
getLogPartialNormalizationConstant in interface DifferentiableStatisticalModelparameterIndex - the index of the parameterException - if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()public double getESS()
DifferentiableStatisticalModelgetESS in interface DifferentiableStatisticalModelpublic int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModelindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...getSizeOfEventSpaceForRandomVariablesOfParameter in interface DifferentiableStatisticalModelindex - the index of the parameterpublic double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.getLogPriorTerm in interface DifferentiableStatisticalModelgetLogPriorTerm in interface StatisticalModelDifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior ).DifferentiableStatisticalModel.getESS(),
DifferentiableStatisticalModel.getLogNormalizationConstant()public void addGradientOfLogPriorTerm(double[] grad,
int start)
DifferentiableStatisticalModelDifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.addGradientOfLogPriorTerm in interface DifferentiableStatisticalModelgrad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredDifferentiableStatisticalModel.getLogPriorTerm()public double[] getCurrentParameterValues()
DifferentiableSequenceScoredouble array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.getCurrentParameterValues in interface DifferentiableSequenceScorepublic boolean isInitialized()
SequenceScoreSequenceScore.getLogScoreFor(Sequence).isInitialized in interface SequenceScoretrue if the instance is initialized, false
otherwisepublic boolean modify(int offsetLeft,
int offsetRight)
MutableoffsetLeft
and offsetRight define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.public int[][] getSamplingGroups(int parameterOffset)
SamplingDifferentiableStatisticalModelgetSamplingGroups in interface SamplingDifferentiableStatisticalModelparameterOffset - a global offset on the parameter indexesparameterOffset.public DataSet emitDataSet(int numberOfSequences, int... seqLength) throws NotTrainedException, Exception
StatisticalModelDataSet object containing artificial
sequence(s).
emitDataSet( int n, int l ) should return a data set with
n sequences of length l.
emitDataSet( int n, int[] l ) should return a data set with
n sequences which have a sequence length corresponding to
the entry in the given array l.
emitDataSet( int n ) and
emitDataSet( int n, null ) should return a data set with
n sequences of length of the model (
SequenceScore.getLength()).
Exception.emitDataSet in interface StatisticalModelemitDataSet in class AbstractDifferentiableStatisticalModelnumberOfSequences - the number of sequences that should be contained in the
returned data setseqLength - the length of the sequences for a homogeneous model; for an
inhomogeneous model this parameter should be null
or an array of size 0.DataSet containing the artificial sequence(s)NotTrainedException - if the model is not trained yetException - if the emission did not succeedDataSet