public class LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder extends AbstractDifferentiableStatisticalModel implements Mutable
| Modifier and Type | Class and Description |
|---|---|
static class |
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder.PriorType
The type of the prior used by the Slim model
|
alphabets, length, rUNKNOWN| Constructor and Description |
|---|
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder(AlphabetContainer alphabets,
int length,
int components,
int distance,
double ess)
Creates a new Slim model with given number of components and maximum distance.
|
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder(AlphabetContainer alphabets,
int length,
int order,
int distance,
double ess,
double q,
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder.PriorType t)
Creates a new Slim model with given number of components and maximum distance.
|
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder(StringBuffer xml)
Creates a
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder model from its XML representation |
| Modifier and Type | Method and Description |
|---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer. |
double[][] |
getAncestorProbabilities(int component)
Returns the probabilities that the preceding positions considered are used as context.
|
double[][][] |
getConditionalProbabilities(int component)
Returns the conditional probabilities for the specified component.
|
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
int |
getDistance()
Returns the maximum distance of preceding positions considered in the LSlim model.
|
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
String |
getGraphviz()
Returns a Graphviz (dot) representation of the Slim model.
|
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space.
|
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex. |
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
|
double |
getLogScoreFor(Sequence seq,
int start)
|
double[][] |
getMixtureProbabilities()
Returns the probabilities of the mixture components.
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore. |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts.
|
int |
getOrder()
Returns the order of the Slim model
|
double[][] |
getPWMParameters()
Returns the unconditional, normalized (PWM) probabilities of this Slim model
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore. |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model.
|
void |
set(int position,
double[] pars)
Sets the (conditional) probability parameters at a specific position and sets the mixture parameters
(largely) to the unconditional PWM component.
|
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
String |
toString(NumberFormat nf)
This method returns a
String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
emitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalized, isNormalizedgetAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfStarts, getNumericalCharacteristics, toStringequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetLogScoreAndPartialDerivation, getLogScoreAndPartialDerivationgetAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getNumericalCharacteristicspublic LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder(AlphabetContainer alphabets, int length, int components, int distance, double ess) throws IllegalArgumentException
alphabets - the alphabet of sequences the model is defined onlength - the length of the sequences that may be scorescomponents - the number of components, i.e., the number of preceding positions considered jointlydistance - the maximum distance of preceding positions consideredess - the equivalent sample sizeIllegalArgumentException - if the ess or other parameters are not allowedpublic LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder(AlphabetContainer alphabets, int length, int order, int distance, double ess, double q, LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder.PriorType t) throws IllegalArgumentException
alphabets - the alphabet of sequences the model is defined onlength - the length of the sequences that may be scoresorder - the number of components, i.e., the number of preceding positions considered jointlydistance - the maximum distance of preceding positions consideredess - the equivalent sample sizeq - Parameter q of the mixture prior, ignored for BDeu priort - the type of the priorIllegalArgumentException - if the ess or other parameters are not allowedpublic LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder(StringBuffer xml) throws NonParsableException
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder model from its XML representationxml - the XML representationNonParsableException - if XML could not be parsedpublic int getOrder()
public int getDistance()
public LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder clone() throws CloneNotSupportedException
DifferentiableSequenceScoreDifferentiableSequenceScore
instance.clone in interface DifferentiableSequenceScoreclone in interface SequenceScoreclone in class AbstractDifferentiableStatisticalModelDifferentiableSequenceScoreCloneNotSupportedException - if something went wrong while cloning the
DifferentiableSequenceScorepublic int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModelindex, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...getSizeOfEventSpaceForRandomVariablesOfParameter in interface DifferentiableStatisticalModelindex - the index of the parameterpublic double getLogNormalizationConstant()
DifferentiableStatisticalModelgetLogNormalizationConstant in interface DifferentiableStatisticalModelpublic double getLogPartialNormalizationConstant(int parameterIndex)
throws Exception
DifferentiableStatisticalModelparameterIndex. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex,
![\[\log \frac{\partial Z(\underline{\lambda})}{\partial \lambda_{parameterindex}}\]](images/DifferentiableStatisticalModel_LaTeXilb9_1.png)
getLogPartialNormalizationConstant in interface DifferentiableStatisticalModelparameterIndex - the index of the parameterException - if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()public void initializeFunctionRandomly(boolean freeParams)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore randomly. It has to
create the underlying structure of the DifferentiableSequenceScore.initializeFunctionRandomly in interface DifferentiableSequenceScorefreeParams - indicates whether the (reduced) parameterization is usedException - if something went wrongpublic void initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
throws Exception
DifferentiableSequenceScoreDifferentiableSequenceScore.initializeFunction in interface DifferentiableSequenceScoreindex - the index of the class the DifferentiableSequenceScore modelsfreeParams - indicates whether the (reduced) parameterization is useddata - the data setsweights - the weights of the sequences in the data setsException - if something went wrongpublic double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior )
prior is the prior for the parameters of this model.getLogPriorTerm in interface DifferentiableStatisticalModelgetLogPriorTerm in interface StatisticalModelDifferentiableStatisticalModel.getESS() * DifferentiableStatisticalModel.getLogNormalizationConstant() + Math.log( prior ).DifferentiableStatisticalModel.getESS(),
DifferentiableStatisticalModel.getLogNormalizationConstant()public void addGradientOfLogPriorTerm(double[] grad,
int start)
throws Exception
DifferentiableStatisticalModelDifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. The results are added to the array
grad beginning at index start.addGradientOfLogPriorTerm in interface DifferentiableStatisticalModelgrad - the array of gradientsstart - the start index in the grad array, where the
partial derivations for the parameters of this models shall be
enteredException - if something went wrong with the computing of the gradientsDifferentiableStatisticalModel.getLogPriorTerm()public double getESS()
DifferentiableStatisticalModelgetESS in interface DifferentiableStatisticalModelpublic double getLogScoreFor(Sequence seq, int start)
SequenceScoregetLogScoreFor in interface SequenceScoreseq - the Sequencestart - the start position in the SequenceSequencepublic double getLogScoreAndPartialDerivation(Sequence seq, int start, IntList indices, DoubleList partialDer)
DifferentiableSequenceScoreSequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations.getLogScoreAndPartialDerivation in interface DifferentiableSequenceScoreseq - the Sequencestart - the start position in the Sequenceindices - an IntList of indices, after method invocation the
list should contain the indices i where
is not zeropartialDer - a DoubleList of partial derivations, after method
invocation the list should contain the corresponding
that are not zeroSequencepublic int getNumberOfParameters()
DifferentiableSequenceScoreDifferentiableSequenceScore. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN.getNumberOfParameters in interface DifferentiableSequenceScoreDifferentiableSequenceScoreDifferentiableSequenceScore.UNKNOWNpublic double[] getCurrentParameterValues()
throws Exception
DifferentiableSequenceScoredouble array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][]) before.
After an optimization this method can be used to get the current
parameter values.getCurrentParameterValues in interface DifferentiableSequenceScoreException - if no parameters exist (yet)public void set(int position,
double[] pars)
position - the positionpars - the new parameters at this positionpublic void setParameters(double[] params,
int start)
DifferentiableSequenceScoreparams between start and
start + DifferentiableSequenceScore.getNumberOfParameters() - 1setParameters in interface DifferentiableSequenceScoreparams - the new parametersstart - the start index in paramspublic String getInstanceName()
SequenceScoregetInstanceName in interface SequenceScorepublic boolean isInitialized()
SequenceScoreSequenceScore.getLogScoreFor(Sequence).isInitialized in interface SequenceScoretrue if the instance is initialized, false
otherwisepublic StringBuffer toXML()
StorableStringBuffer of an
instance of the implementing class.protected void fromXML(StringBuffer xml) throws NonParsableException
AbstractDifferentiableSequenceScoreStorable
interface to create a scoring function from a StringBuffer.fromXML in class AbstractDifferentiableSequenceScorexml - the XML representation as StringBufferNonParsableException - if the StringBuffer could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)public String toString(NumberFormat nf)
SequenceScoreString representation of the instance.toString in interface SequenceScorenf - the NumberFormat for the String representation of parameters or probabilitiesString representation of the instancepublic double[][][] getConditionalProbabilities(int component)
throws CloneNotSupportedException
component - the componentCloneNotSupportedException - if the internal probabilities could not be clonedpublic double[][] getPWMParameters()
throws CloneNotSupportedException
CloneNotSupportedException - if the internal parameters could not be clonedpublic double[][] getMixtureProbabilities()
throws CloneNotSupportedException
CloneNotSupportedException - if the internal parameters could not be clonedpublic double[][] getAncestorProbabilities(int component)
component - the component consideredpublic String getGraphviz()
public int getNumberOfRecommendedStarts()
DifferentiableSequenceScoregetNumberOfRecommendedStarts in interface DifferentiableSequenceScoregetNumberOfRecommendedStarts in class AbstractDifferentiableSequenceScorepublic boolean modify(int offsetLeft,
int offsetRight)
MutableoffsetLeft
and offsetRight define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.