| Package | Description |
|---|---|
| de.jstacs.classifiers |
This package provides the framework for any classifier.
|
| de.jstacs.classifiers.assessment |
This package allows to assess classifiers.
It contains the class ClassifierAssessment that
is used as a super-class of all implemented methodologies of
an assessment to assess classifiers. |
| de.jstacs.classifiers.differentiableSequenceScoreBased |
Provides the classes for
Classifiers that are based on SequenceScores.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels by
a unified generative-discriminative learning principle. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.msp |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL). |
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| de.jstacs.classifiers.trainSMBased |
Provides the classes for
Classifiers that are based on TrainableStatisticalModels. |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared |
| Modifier and Type | Class and Description |
|---|---|
class |
AbstractScoreBasedClassifier
This class is the main class for all score based classifiers.
|
class |
MappingClassifier
This class allows the user to train the classifier on a given number of
classes and to evaluate the classifier on a smaller number of classes by
mapping classes together.
|
| Modifier and Type | Method and Description |
|---|---|
AbstractClassifier |
AbstractClassifier.clone() |
static AbstractClassifier |
ClassifierFactory.createClassifier(DifferentiableSequenceScore... models)
Creates a classifier that is based on at least two
DifferentiableSequenceScores. |
static AbstractClassifier |
ClassifierFactory.createClassifier(double[] beta,
DifferentiableStatisticalModel... models)
Creates a classifier that is based on at least two
DifferentiableStatisticalModels. |
static AbstractClassifier |
ClassifierFactory.createClassifier(LearningPrinciple principle,
DifferentiableStatisticalModel... models)
Creates a classifier that is based on at least two
DifferentiableStatisticalModels. |
static AbstractClassifier |
ClassifierFactory.createGenerativeClassifier(TrainableStatisticalModel... models)
Creates a classifier that is based on at least two
TrainableStatisticalModels. |
| Modifier and Type | Field and Description |
|---|---|
protected AbstractClassifier[] |
ClassifierAssessment.myAbstractClassifier
This array contains the internal used classifiers.
|
| Modifier and Type | Method and Description |
|---|---|
AbstractClassifier[] |
ClassifierAssessment.getClassifier()
Returns a deep copy of all classifiers that have been or will be used in
this assessment.
|
| Constructor and Description |
|---|
ClassifierAssessment(AbstractClassifier... aCs)
Creates a new
ClassifierAssessment from a set of
AbstractClassifiers. |
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifiers and, in addition, classifiers that will be
constructed using the given TrainableStatisticalModels. |
ClassifierAssessment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
ClassifierAssessment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
KFoldCrossValidation(AbstractClassifier... aCs)
Creates a new
KFoldCrossValidation from a set of
AbstractClassifiers. |
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a KFoldCrossValidation
. |
KFoldCrossValidation(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
KFoldCrossValidation from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a
RepeatedHoldOutExperiment. |
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
RepeatedSubSamplingExperiment(AbstractClassifier... aCs)
Creates a new
RepeatedSubSamplingExperiment from a set of
AbstractClassifiers. |
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a
RepeatedSubSamplingExperiment. |
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
RepeatedSubSamplingExperiment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifiers and those constructed using the given
TrainableStatisticalModels by a
Sampled_RepeatedHoldOutExperiment. |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
| Modifier and Type | Class and Description |
|---|---|
class |
ScoreClassifier
This abstract class implements the main functionality of a
DifferentiableSequenceScore based classifier. |
| Modifier and Type | Class and Description |
|---|---|
class |
GenDisMixClassifier
This class implements a classifier the optimizes the following function
have to sum to 1. |
| Modifier and Type | Class and Description |
|---|---|
class |
MSPClassifier
This class implements a classifier that allows the training via MCL or MSP principle.
|
| Modifier and Type | Class and Description |
|---|---|
class |
SamplingGenDisMixClassifier
A classifier that samples its parameters from a
LogGenDisMixFunction using the
Metropolis-Hastings algorithm. |
class |
SamplingScoreBasedClassifier
A classifier that samples the parameters of
SamplingDifferentiableStatisticalModels by the Metropolis-Hastings algorithm. |
| Modifier and Type | Class and Description |
|---|---|
class |
TrainSMBasedClassifier
Classifier that works on
TrainableStatisticalModels for each of the different classes. |
| Modifier and Type | Class and Description |
|---|---|
class |
SharedStructureClassifier
This class enables you to learn the structure on all classes of the
classifier together.
|