| Package | Description |
|---|---|
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| de.jstacs.sampling |
This package contains many classes that can be used while a sampling.
|
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
The package provides different implementations of hidden Markov models based on
AbstractHMM. |
| de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
This package is the super package for any mixture model.
|
| de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif |
| Modifier and Type | Field and Description |
|---|---|
protected BurnInTest |
SamplingScoreBasedClassifier.burnInTest
The
BurnInTest, may be null for no test |
| Modifier and Type | Method and Description |
|---|---|
protected double |
SamplingScoreBasedClassifier.sampleNSteps(Function function,
SamplingScoreBasedClassifier.DiffSMSamplingComponent component,
BurnInTest test,
int numSteps,
SamplingScoreBasedClassifier.SamplingScheme scheme)
Samples a predefined number of steps appended to the current sampling
|
| Constructor and Description |
|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
double[] beta,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new
SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta for the three components of the
LogGenDisMixFunction, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes. |
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new
SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
SamplingScoreBasedClassifier(SamplingScoreBasedClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new
SamplingScoreBasedClassifier using the parameters in params,
a specified BurnInTest (or null for no burn-in test), a set of sampling variances,
which may be different for each of the classes (in analogy to equivalent sample size for the Dirichlet distribution),
and set set of SamplingDifferentiableStatisticalModels for each of the classes. |
| Modifier and Type | Class and Description |
|---|---|
class |
AbstractBurnInTest
This abstract class implements some of the methods of
BurnInTest to
alleviate the implementation of efficient and new burn-in tests. |
class |
SimpleBurnInTest
Deprecated.
since this burn test ignore the data coming from the sampling, it might be problematic to use this test
|
class |
VarianceRatioBurnInTest
In this class the Variance-Ratio method of Gelman and Rubin is implemented to
test the length of the burn-in phase of a multi-chain Gibbs Sampling (number
of chains >2).
|
| Modifier and Type | Method and Description |
|---|---|
BurnInTest |
BurnInTest.clone()
Return a deep copy of this object.
|
| Modifier and Type | Field and Description |
|---|---|
protected BurnInTest |
SamplingHigherOrderHMM.burnInTest
This variable holds the BurnInTest used for training the model
|
| Modifier and Type | Field and Description |
|---|---|
protected BurnInTest |
AbstractMixtureTrainSM.burnInTest
The
BurnInTest that is used to stop the sampling. |
| Constructor and Description |
|---|
AbstractMixtureTrainSM(int length,
TrainableStatisticalModel[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
AbstractMixtureTrainSM. |
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
double[] weights,
int starts,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component
probabilities.
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
MixtureTrainSM. |
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component
probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
StrandTrainSM. |
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component
probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double forwardStrandProb,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component
probabilities.
|
| Constructor and Description |
|---|
HiddenMotifMixture(TrainableStatisticalModel[] models,
boolean[] optimzeArray,
int components,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
HiddenMotifMixture. |
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
ZOOPSTrainSM. |