| Package | Description |
|---|---|
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm |
The package provides all interfaces and classes for a hidden Markov model (HMM).
|
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
The package provides different implementations of hidden Markov models based on
AbstractHMM. |
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions |
The package provides all interfaces and classes for transitions used in hidden Markov models.
|
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements |
| Class and Description |
|---|
| BasicHigherOrderTransition.AbstractTransitionElement
This class declares the probability distribution for a given context, i.e.
|
| Transition
This interface declares the methods of the transition used in a hidden Markov model.
|
| Class and Description |
|---|
| BasicHigherOrderTransition.AbstractTransitionElement
This class declares the probability distribution for a given context, i.e.
|
| Class and Description |
|---|
| BasicHigherOrderTransition
This class implements the basic transition that allows to be trained using the viterbi or the Baum-Welch algorithm.
|
| BasicHigherOrderTransition.AbstractTransitionElement
This class declares the probability distribution for a given context, i.e.
|
| DifferentiableTransition
This class declares methods that allow for optimizing the parameters numerically using the
Optimizer. |
| HigherOrderTransition
This class can be used in any
AbstractHMM allowing to use gradient based or sampling training algorithm. |
| SamplingTransition
This interface declares all method used during a sampling.
|
| TrainableTransition
This class declares methods that allow for estimating the parameters from a sufficient statistic,
as for instance done in the (modified) Baum-Welch algorithm, viterbi training, or Gibbs sampling.
|
| Transition
This interface declares the methods of the transition used in a hidden Markov model.
|
| TransitionWithSufficientStatistic
This interface defines method for reseting and filling an internal sufficient statistic.
|
| Class and Description |
|---|
| BasicHigherOrderTransition.AbstractTransitionElement
This class declares the probability distribution for a given context, i.e.
|