|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use AbstractClassifier | |
|---|---|
| de.jstacs.classifier | This package provides the framework for any classifier. |
| de.jstacs.classifier.assessment | This package allows to assess classifiers. |
| de.jstacs.classifier.modelBased | Provides the classes for Classifiers that are based on Models |
| de.jstacs.classifier.scoringFunctionBased | Provides the classes for Classifiers that are based on ScoringFunctions. |
| de.jstacs.classifier.scoringFunctionBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of NormalizableScoringFunctions by
a unified generative-discriminative learning principle |
| de.jstacs.classifier.scoringFunctionBased.msp | Provides an implementation of a classifier that allows to train the parameters of a set of ScoringFunctions either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL) |
| de.jstacs.classifier.scoringFunctionBased.sampling | Provides the classes for AbstractScoreBasedClassifiers that are based on SamplingScoringFunctions and that sample parameters
using the Metropolis-Hastings algorithm. |
| de.jstacs.models.discrete.inhomogeneous.shared | |
| Uses of AbstractClassifier in de.jstacs.classifier |
|---|
| Subclasses of AbstractClassifier in de.jstacs.classifier | |
|---|---|
class |
AbstractScoreBasedClassifier
This class is the main class for all score based classifiers. |
class |
MappingClassifier
This class allows the user to train the classifier on a given number of classes and to evaluate the classifier on a smaller number of classes by mapping classes together. |
| Methods in de.jstacs.classifier that return AbstractClassifier | |
|---|---|
AbstractClassifier |
AbstractClassifier.clone()
|
| Uses of AbstractClassifier in de.jstacs.classifier.assessment |
|---|
| Fields in de.jstacs.classifier.assessment declared as AbstractClassifier | |
|---|---|
protected AbstractClassifier[] |
ClassifierAssessment.myAbstractClassifier
This array contains the internal used classifiers. |
| Methods in de.jstacs.classifier.assessment that return AbstractClassifier | |
|---|---|
AbstractClassifier[] |
ClassifierAssessment.getClassifier()
Returns a deep copy of all classifiers that have been or will be used in this assessment. |
| Constructors in de.jstacs.classifier.assessment with parameters of type AbstractClassifier | |
|---|---|
ClassifierAssessment(AbstractClassifier... aCs)
Creates a new ClassifierAssessment from a set of
AbstractClassifiers. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and, in addition, classifiers that will be
constructed using the given AbstractModels. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new ClassifierAssessment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
KFoldCrossValidation(AbstractClassifier... aCs)
Creates a new KFoldCrossValidation from a set of
AbstractClassifiers. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a KFoldCrossValidation
. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new KFoldCrossValidation from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a
RepeatedHoldOutExperiment. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
RepeatedSubSamplingExperiment(AbstractClassifier... aCs)
Creates a new RepeatedSubSamplingExperiment from a set of
AbstractClassifiers. |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a
RepeatedSubSamplingExperiment. |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedSubSamplingExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a
Sampled_RepeatedHoldOutExperiment. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
| Uses of AbstractClassifier in de.jstacs.classifier.modelBased |
|---|
| Subclasses of AbstractClassifier in de.jstacs.classifier.modelBased | |
|---|---|
class |
ModelBasedClassifier
This class is the main class for all model based classifiers. |
| Uses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased |
|---|
| Subclasses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased | |
|---|---|
class |
ScoreClassifier
This abstract class implements the main functionality of a ScoringFunction based classifier. |
| Uses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased.gendismix |
|---|
| Subclasses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased.gendismix | |
|---|---|
class |
GenDisMixClassifier
This class implements a classifier the optimizes the following function have to sum to 1. |
| Uses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased.msp |
|---|
| Subclasses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased.msp | |
|---|---|
class |
MSPClassifier
This class implements a classifier that allows the training via MCL or MSP principle. |
| Uses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased.sampling |
|---|
| Subclasses of AbstractClassifier in de.jstacs.classifier.scoringFunctionBased.sampling | |
|---|---|
class |
SamplingGenDisMixClassifier
A classifier that samples its parameters from a LogGenDisMixFunction using the
Metropolis-Hastings algorithm. |
class |
SamplingScoreBasedClassifier
A classifier that samples the parameters of SamplingScoringFunctions by the Metropolis-Hastings algorithm. |
| Uses of AbstractClassifier in de.jstacs.models.discrete.inhomogeneous.shared |
|---|
| Subclasses of AbstractClassifier in de.jstacs.models.discrete.inhomogeneous.shared | |
|---|---|
class |
SharedStructureClassifier
This class enables you to learn the structure on all classes of the classifier together. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||