|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use BurnInTest | |
|---|---|
| de.jstacs.classifier.scoringFunctionBased.sampling | Provides the classes for AbstractScoreBasedClassifiers that are based on SamplingScoringFunctions and that sample parameters
using the Metropolis-Hastings algorithm. |
| de.jstacs.models.hmm.models | The package provides different implementations of hidden Markov models based on AbstractHMM |
| de.jstacs.models.mixture | This package is the super package for any mixture model. |
| de.jstacs.models.mixture.motif | |
| de.jstacs.sampling | This package contains many classes that can be used while a sampling. |
| Uses of BurnInTest in de.jstacs.classifier.scoringFunctionBased.sampling |
|---|
| Fields in de.jstacs.classifier.scoringFunctionBased.sampling declared as BurnInTest | |
|---|---|
protected BurnInTest |
SamplingScoreBasedClassifier.burnInTest
The BurnInTest, may be null for no test |
| Methods in de.jstacs.classifier.scoringFunctionBased.sampling with parameters of type BurnInTest | |
|---|---|
protected double |
SamplingScoreBasedClassifier.sampleNSteps(SFBasedOptimizableFunction function,
SamplingScoreBasedClassifier.ScoringFunctionSamplingComponent component,
BurnInTest test,
int numSteps,
SamplingScoreBasedClassifier.SamplingScheme scheme)
Samples a predefined number of steps appended to the current sampling |
| Constructors in de.jstacs.classifier.scoringFunctionBased.sampling with parameters of type BurnInTest | |
|---|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
double[] beta,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta for the three components of the
LogGenDisMixFunction, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes. |
|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
|
SamplingScoreBasedClassifier(SamplingScoreBasedClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingScoreBasedClassifier using the parameters in params,
a specified BurnInTest (or null for no burn-in test), a set of sampling variances,
which may be different for each of the classes (in analogy to equivalent sample size for the Dirichlet distribution),
and set set of SamplingScoringFunctions for each of the classes. |
|
| Uses of BurnInTest in de.jstacs.models.hmm.models |
|---|
| Fields in de.jstacs.models.hmm.models declared as BurnInTest | |
|---|---|
protected BurnInTest |
SamplingHigherOrderHMM.burnInTest
This variable holds the BurnInTest used for training the model |
| Uses of BurnInTest in de.jstacs.models.mixture |
|---|
| Fields in de.jstacs.models.mixture declared as BurnInTest | |
|---|---|
protected BurnInTest |
AbstractMixtureModel.burnInTest
The BurnInTest that is used to stop the sampling. |
| Constructors in de.jstacs.models.mixture with parameters of type BurnInTest | |
|---|---|
AbstractMixtureModel(int length,
Model[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new AbstractMixtureModel. |
|
MixtureModel(int length,
Model[] models,
double[] weights,
int starts,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
|
MixtureModel(int length,
Model[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new MixtureModel. |
|
MixtureModel(int length,
Model[] models,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandModel(Model model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new StrandModel. |
|
StrandModel(Model model,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandModel(Model model,
int starts,
double forwardStrandProb,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
|
| Uses of BurnInTest in de.jstacs.models.mixture.motif |
|---|
| Constructors in de.jstacs.models.mixture.motif with parameters of type BurnInTest | |
|---|---|
HiddenMotifMixture(Model[] models,
boolean[] optimzeArray,
int components,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new HiddenMotifMixture. |
|
SingleHiddenMotifMixture(Model motif,
Model bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new SingleHiddenMotifMixture. |
|
| Uses of BurnInTest in de.jstacs.sampling |
|---|
| Classes in de.jstacs.sampling that implement BurnInTest | |
|---|---|
class |
AbstractBurnInTest
This abstract class implements some of the methods of BurnInTest to
alleviate the implementation of efficient and new burn-in tests. |
class |
SimpleBurnInTest
Deprecated. |
class |
VarianceRatioBurnInTest
In this class the Variance-Ratio method of Gelman and Rubin is implemented to test the length of the burn-in phase of a multi-chain Gibbs Sampling (number of chains >2). |
| Methods in de.jstacs.sampling that return BurnInTest | |
|---|---|
BurnInTest |
BurnInTest.clone()
Return a deep copy of this object. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||