|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use LearningPrinciple | |
|---|---|
| de.jstacs.classifiers | This package provides the framework for any classifier. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels by
a unified generative-discriminative learning principle. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | Provides the classes for AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| Uses of LearningPrinciple in de.jstacs.classifiers |
|---|
| Methods in de.jstacs.classifiers with parameters of type LearningPrinciple | |
|---|---|
static AbstractClassifier |
ClassifierFactory.createClassifier(LearningPrinciple principle,
DifferentiableStatisticalModel... models)
Creates a classifier that is based on at least two DifferentiableStatisticalModels. |
| Uses of LearningPrinciple in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
|---|
| Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix that return LearningPrinciple | |
|---|---|
static LearningPrinciple |
LearningPrinciple.valueOf(String name)
Returns the enum constant of this type with the specified name. |
static LearningPrinciple[] |
LearningPrinciple.values()
Returns an array containing the constants of this enum type, in the order they are declared. |
| Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix with parameters of type LearningPrinciple | |
|---|---|
static double[] |
LearningPrinciple.getBeta(LearningPrinciple key)
This method returns the standard weights for a predefined key. |
| Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix with parameters of type LearningPrinciple | |
|---|---|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
LearningPrinciple key,
DifferentiableStatisticalModel... score)
This convenience constructor creates an array of weights for an elementary learning principle and calls the main constructor. |
|
| Uses of LearningPrinciple in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
|---|
| Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling with parameters of type LearningPrinciple | |
|---|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||