| Package | Description |
|---|---|
| de.jstacs.algorithms.optimization.termination |
Provides classes for termination conditions that can be used in algorithms.
|
| de.jstacs.classifiers.assessment |
This package allows to assess classifiers.
It contains the class ClassifierAssessment that
is used as a super-class of all implemented methodologies of
an assessment to assess classifiers. |
| de.jstacs.classifiers.differentiableSequenceScoreBased |
Provides the classes for
Classifiers that are based on SequenceScores.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels by
a unified generative-discriminative learning principle. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| de.jstacs.classifiers.performanceMeasures |
This package provides the implementations of performance measures that can be used to assess any classifier.
|
| de.jstacs.data |
Provides classes for the representation of data.
The base classes to represent data are Alphabet and AlphabetContainer for representing alphabets,
Sequence and its sub-classes to represent continuous and discrete sequences, and
DataSet to represent data sets comprising a set of sequences. |
| de.jstacs.data.alphabets |
Provides classes for the representation of discrete and continuous alphabets, including a
DNAAlphabet for the most common case of DNA-sequences. |
| de.jstacs.io |
Provides classes for reading data from and writing to a file and storing a number of datatypes, including all primitives, arrays of primitives, and
Storables to an XML-representation. |
| de.jstacs.parameters |
This package provides classes for parameters that establish a general convention for the description of parameters
as defined in the
Parameter-interface. |
| de.jstacs.sampling |
This package contains many classes that can be used while a sampling.
|
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
Provides
DifferentiableStatisticalModels that are directed graphical models. |
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM. |
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM as
a Bayesian tree using a number of measures to define a rating of structures. |
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM as
a permuted Markov model using a number of measures to define a rating of structures. |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.parameters | |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters | |
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training |
The package provides all classes used to determine the training algorithm of a hidden Markov model.
|
| de.jstacs.tools | |
| de.jstacs.tools.ui.galaxy | |
| de.jstacs.utils |
This package contains a bundle of useful classes and interfaces like ...
|
| Modifier and Type | Class and Description |
|---|---|
class |
ClassifierAssessmentAssessParameterSet
This class is the superclass used by all
ClassifierAssessmentAssessParameterSets. |
class |
KFoldCrossValidationAssessParameterSet
This class implements a
ClassifierAssessmentAssessParameterSet that
must be used to call method assess( ... |
class |
RepeatedHoldOutAssessParameterSet
This class implements a
ClassifierAssessmentAssessParameterSet that
must be used to call method assess( ... |
class |
RepeatedSubSamplingAssessParameterSet
This class implements a
ClassifierAssessmentAssessParameterSet that
must be used to call method assess( ... |
class |
Sampled_RepeatedHoldOutAssessParameterSet
This class implements a
ClassifierAssessmentAssessParameterSet that
must be used to call the method assess( ... |
| Modifier and Type | Class and Description |
|---|---|
class |
ScoreClassifierParameterSet
A set of
Parameters for any
ScoreClassifier. |
| Modifier and Type | Class and Description |
|---|---|
class |
GenDisMixClassifierParameterSet
This class contains the parameters for the
GenDisMixClassifier. |
| Modifier and Type | Class and Description |
|---|---|
class |
SamplingGenDisMixClassifierParameterSet
ParameterSet to instantiate a SamplingGenDisMixClassifier. |
class |
SamplingScoreBasedClassifierParameterSet
ParameterSet to instantiate a SamplingScoreBasedClassifier. |
| Modifier and Type | Class and Description |
|---|---|
class |
AbstractNumericalTwoClassPerformanceMeasure
This class is the abstract super class of any performance measure that can only be computed for binary classifiers.
|
class |
AbstractPerformanceMeasure
This class is the abstract super class of any performance measure used to evaluate
an
AbstractClassifier. |
class |
AbstractPerformanceMeasureParameterSet<T extends PerformanceMeasure>
This class implements a container of
PerformanceMeasures that can be used
in AbstractClassifier.evaluate(AbstractPerformanceMeasureParameterSet, boolean, de.jstacs.data.DataSet...). |
class |
AbstractTwoClassPerformanceMeasure
This class is the abstract super class of any performance measure that can only be computed for binary classifiers.
|
class |
AucPR
This class implements the area under curve of the precision-recall curve.
|
class |
AucROC
This class implements the area under curve of the Receiver Operating Characteristics curve.
|
class |
ClassificationRate
This class implements the classification rate, i.e.
|
class |
ConfusionMatrix
This class implements the performance measure confusion matrix.
|
class |
CorrelationCoefficient
PerformanceMeasure using Pearson or Spearman correlation between prediction scores and
weighted class labels. |
class |
FalsePositiveRateForFixedSensitivity
This class implements the false positive rate for a fixed sensitivity.
|
class |
MaximumCorrelationCoefficient
This class implements the maximum of the correlation coefficient
. |
class |
MaximumFMeasure
Computes the maximum of the general F-measure given a positive real parameter
. |
class |
MaximumNumericalTwoClassMeasure
This class prepares everything for an easy implementation of a maximum of any numerical performance measure.
|
class |
NumericalPerformanceMeasureParameterSet
This class implements a container for
NumericalPerformanceMeasures that can be used, for instance, in an repeated assessment,
(cf. |
class |
PerformanceMeasureParameterSet
This class implements a container of
AbstractPerformanceMeasures that can be used
in AbstractClassifier.evaluate(AbstractPerformanceMeasureParameterSet, boolean, de.jstacs.data.DataSet...). |
class |
PositivePredictiveValueForFixedSensitivity
This class implements the positive predictive value for a fixed sensitivity.
|
class |
PRCurve
This class implements the precision-recall curve and its area under the curve.
|
class |
ROCCurve
This class implements the Receiver Operating Characteristics curve and the area under the curve.
|
class |
SensitivityForFixedSpecificity
This class implements the sensitivity for a fixed specificity.
|
| Modifier and Type | Class and Description |
|---|---|
static class |
AlphabetContainer.AbstractAlphabetContainerParameterSet<T extends AlphabetContainer>
This class is the super class of any
InstanceParameterSet for AlphabetContainer. |
class |
AlphabetContainerParameterSet
Class for the
ParameterSet of an AlphabetContainer. |
static class |
AlphabetContainerParameterSet.AlphabetArrayParameterSet
Class for the parameters of an array of
Alphabets of defined
length. |
static class |
AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
|
| Modifier and Type | Method and Description |
|---|---|
static <T extends InstantiableFromParameterSet> |
ParameterSetParser.getInstanceFromParameterSet(ParameterSet pars,
Class<T> instanceClass)
Returns an instance of a subclass of
InstantiableFromParameterSet
that can be instantiated by the ParameterSet pars. |
| Modifier and Type | Class and Description |
|---|---|
class |
ArrayParameterSet
Class for a
ParameterSet that consists of a length-Parameter
that defines the length of the array and an array of
ParameterSetContainers of this length. |
class |
ExpandableParameterSet
A class for a
ParameterSet that can be expanded by additional
Parameters at runtime. |
class |
InstanceParameterSet<T extends InstantiableFromParameterSet>
Container class for a set of
Parameters that can be used to
instantiate another class. |
class |
SequenceScoringParameterSet<T extends InstantiableFromParameterSet>
Abstract class for a
ParameterSet containing all parameters necessary
to construct an Object that implements
InstantiableFromParameterSet. |
class |
SimpleParameterSet
Class for a
ParameterSet that is constructed from an array of Parameters. |
| Modifier and Type | Field and Description |
|---|---|
protected ParameterSet |
AbstractSelectionParameter.parameters
The internal
ParameterSet that holds the possible values |
protected ParameterSet |
Parameter.parent
If this
Parameter is enclosed in a ParameterSet, this
variable holds a reference to that ParameterSet. |
protected ParameterSet |
ExpandableParameterSet.template
The template for each
ParameterSet |
| Modifier and Type | Method and Description |
|---|---|
ParameterSet |
ParameterSet.clone()
Creates a full clone (deep copy) of this
ParameterSet. |
ParameterSet |
AbstractSelectionParameter.getParametersInCollection()
Returns the possible values in this collection.
|
ParameterSet |
Parameter.getParent()
Returns a reference to the
ParameterSet enclosing this
Parameter. |
ParameterSet |
ParameterSetContainer.getValue() |
| Modifier and Type | Method and Description |
|---|---|
static String |
ParameterSet.getComment(ParameterSet p)
Returns a comment for the
ParameterSet. |
static String |
ParameterSet.getName(ParameterSet p)
Returns a name for the
ParameterSet. |
boolean |
ParameterSet.isComparable(ParameterSet p)
This method checks whether the given
ParameterSet is comparable to the current instance, i.e. |
boolean |
ExpandableParameterSet.replaceContentWith(ParameterSet[] paramSetArray)
First removes all previous added
ParameterSetContainers and
afterwards adds all given ParameterSets (in the given order)
enclosed in new ParameterSetContainers. |
void |
Parameter.setParent(ParameterSet parent)
|
| Modifier and Type | Method and Description |
|---|---|
static String |
ParameterSet.getComment(Class<? extends ParameterSet> c)
Returns a comment for the class.
|
static String |
ParameterSet.getName(Class<? extends ParameterSet> c)
Returns a name for the class.
|
| Constructor and Description |
|---|
AbstractSelectionParameter(String name,
String comment,
boolean required,
ParameterSet... values)
Constructor for a
AbstractSelectionParameter from an array of
ParameterSets. |
ArrayParameterSet(ParameterSet template,
String nameTemplate,
String commentTemplate)
Creates a new
ArrayParameterSet from a Class that can be
instantiated using this ArrayParameterSet and templates for the
ParameterSet in each element of the array, the name and the
comment that are displayed for the ParameterSetContainers
enclosing the ParameterSets. |
ArrayParameterSet(ParameterSet template,
String nameTemplate,
String commentTemplate,
String lengthName,
String lengthComment,
NumberValidator<Integer> allowedLengths)
Creates a new
ArrayParameterSet from a Class that can be
instantiated using this ArrayParameterSet and templates for the
ParameterSet in each element of the array, the name and the
comment that are displayed for the ParameterSetContainers
enclosing the ParameterSets. |
ExpandableParameterSet(ParameterSet[] templateAndContent,
String nameTemplate,
String commentTemplate)
Creates a new
ExpandableParameterSet from a ParameterSet
-array. |
ExpandableParameterSet(ParameterSet template,
String nameTemplate,
String commentTemplate)
Creates a new
ExpandableParameterSet from a Class that
can be instantiated using this ExpandableParameterSet and
templates for the ParameterSet in each element of the array, the
name and the comment that are displayed for the
ParameterSetContainers enclosing the ParameterSets. |
ExpandableParameterSet(ParameterSet template,
String nameTemplate,
String commentTemplate,
int initCount)
Creates a new
ExpandableParameterSet from a Class that
can be instantiated using this ExpandableParameterSet and
templates for the ParameterSet in each element of the array, the
name and the comment that are displayed for the
ParameterSetContainers enclosing the ParameterSets. |
MultiSelectionParameter(String name,
String comment,
boolean required,
ParameterSet... values)
Creates a new
MultiSelectionParameter from an array of
ParameterSets. |
ParameterSetContainer(ParameterSet p)
Creates an new
ParameterSetContainer out of a ParameterSet. |
ParameterSetContainer(String name,
String comment,
ParameterSet content)
Creates an new
ParameterSetContainer out of a
ParameterSet. |
ParameterSetTagger(String[] tags,
ParameterSet... sets)
The constructor creates an new instance by collecting and tagging all parameters of the
ParameterSets. |
SelectionParameter(String name,
String comment,
boolean required,
ParameterSet... values)
Constructor for a
SelectionParameter from an array of
ParameterSets. |
| Constructor and Description |
|---|
ParameterSetContainer(Class<? extends ParameterSet> contentClazz)
Creates an new
ParameterSetContainer out of the class
of a ParameterSet. |
ParameterSetContainer(String name,
String comment,
Class<? extends ParameterSet> contentClazz)
Creates an new
ParameterSetContainer out of the class
of a ParameterSet. |
| Modifier and Type | Class and Description |
|---|---|
class |
AbstractBurnInTestParameterSet
Class for the parameters of a
AbstractBurnInTest. |
class |
VarianceRatioBurnInTestParameterSet
Class for the parameters of a
VarianceRatioBurnInTest. |
| Modifier and Type | Class and Description |
|---|---|
class |
BayesianNetworkDiffSMParameterSet
Class for the parameters of a
BayesianNetworkDiffSM. |
| Modifier and Type | Class and Description |
|---|---|
static class |
InhomogeneousMarkov.InhomogeneousMarkovParameterSet
Class for an
InstanceParameterSet that defines the parameters of
an InhomogeneousMarkov structure Measure. |
static class |
Measure.MeasureParameterSet
This class is the super class of any
ParameterSet that can be used to instantiate a Measure. |
| Modifier and Type | Class and Description |
|---|---|
static class |
BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
Class for the parameters of a
BTExplainingAwayResidual structure
Measure. |
static class |
BTMutualInformation.BTMutualInformationParameterSet
Class for the parameters of a
BTMutualInformation structure
Measure. |
| Modifier and Type | Class and Description |
|---|---|
static class |
PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
Class for the parameters of a
PMMExplainingAwayResidual structure
Measure. |
static class |
PMMMutualInformation.PMMMutualInformationParameterSet
Class for the parameters of a
PMMMutualInformation structure
Measure. |
| Modifier and Type | Class and Description |
|---|---|
class |
DGTrainSMParameterSet<T extends DiscreteGraphicalTrainSM>
The super
ParameterSet for any parameter set of
a DiscreteGraphicalTrainSM. |
| Modifier and Type | Class and Description |
|---|---|
class |
HomMMParameterSet
This class implements a container for all parameters of a homogeneous Markov
model.
|
class |
HomogeneousTrainSMParameterSet
This class implements a container for all parameters of any homogeneous
model.
|
| Modifier and Type | Class and Description |
|---|---|
class |
BayesianNetworkTrainSMParameterSet
The
ParameterSet for the class
BayesianNetworkTrainSM. |
class |
ConstraintParameterSet
This class enables you to input your own structure defined by some constraints.
|
class |
FSDAGModelForGibbsSamplingParameterSet
The class for the parameters of a
FSDAGModelForGibbsSampling. |
class |
FSDAGTrainSMParameterSet
The class for the parameters of a
FSDAGTrainSM (fixed
structure directed acyclic graphical
model). |
class |
FSMEMParameterSet
The ParameterSet for a FSMEManager.
|
class |
IDGTrainSMParameterSet
This is the abstract container of parameters that is a root container for all
inhomogeneous discrete graphical model parameter containers.
|
class |
MEManagerParameterSet
The ParameterSet for any MEManager.
|
| Modifier and Type | Class and Description |
|---|---|
class |
BaumWelchParameterSet
This class implements an
HMMTrainingParameterSet for the Baum-Welch training of an AbstractHMM. |
class |
HMMTrainingParameterSet
This class implements an abstract
ParameterSet that is used for the training of an AbstractHMM. |
class |
MaxHMMTrainingParameterSet
This class is the super class for any
HMMTrainingParameterSet that
is used for a maximizing training algorithm of a hidden Markov model. |
class |
MultiThreadedTrainingParameterSet
This class is the super class for any
MaxHMMTrainingParameterSet that
is used for a multi-threaded maximizing training algorithm of a hidden Markov model. |
class |
NumericalHMMTrainingParameterSet
This class implements an
ParameterSet for numerical training of an AbstractHMM. |
class |
SamplingHMMTrainingParameterSet
This class contains the parameters for training training an
AbstractHMM using a sampling strategy. |
class |
ViterbiParameterSet
This class implements an
ParameterSet for the viterbi training of an AbstractHMM. |
| Modifier and Type | Method and Description |
|---|---|
ParameterSet |
ToolResult.getToolParameters()
Returns the tool's parameters that have been used to create the results stored in this
ToolResult. |
ParameterSet |
JstacsTool.getToolParameters()
Returns the input parameters of this tool.
|
| Modifier and Type | Method and Description |
|---|---|
static FileParameter |
DataColumnParameter.find(ParameterSet top,
String dataRef)
Finds the parameter for the given ID in a
ParameterSet. |
ToolResult |
JstacsTool.run(ParameterSet parameters,
Protocol protocol,
ProgressUpdater progress,
int threads)
Runs the tool using the provided (now filled) parameters, which are in structure identical to those returned by
JstacsTool.getToolParameters(). |
void |
ToolResult.setFromStoredParameters(ParameterSet other)
Sets the values of all parameters in
other to those stored in the internal parameters
that have been supplied upon construction. |
| Constructor and Description |
|---|
ToolResult(String name,
String comment,
ResultSet annotation,
ResultSet result,
ParameterSet toolParameters,
String toolName,
Date finished)
Creates a new
ToolResult with most arguments identical to those of a ListResult. |
| Constructor and Description |
|---|
GalaxyAdaptor(ParameterSet parameters,
JstacsTool.ResultEntry[] defaultResults,
boolean[] addLine,
String toolname,
String description,
String version,
String command,
String labelName)
Creates a new
GalaxyAdaptor from a given ParameterSet containing all parameters
that are necessary for a program is shall be included in a Galaxy installation. |
| Modifier and Type | Method and Description |
|---|---|
static <T> SelectionParameter |
SubclassFinder.getSelectionParameter(Class<? extends ParameterSet> clazz,
String startPackage,
String name,
String comment,
boolean required)
This method creates an
SelectionParameter that contains
InstanceParameterSet for each possible
class. |