| Package | Description |
|---|---|
| de.jstacs |
This package is the root package for the most and important packages.
|
| de.jstacs.algorithms.optimization.termination |
Provides classes for termination conditions that can be used in algorithms.
|
| de.jstacs.classifiers.differentiableSequenceScoreBased |
Provides the classes for
Classifiers that are based on SequenceScores.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModels by
a unified generative-discriminative learning principle. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| de.jstacs.data |
Provides classes for the representation of data.
The base classes to represent data are Alphabet and AlphabetContainer for representing alphabets,
Sequence and its sub-classes to represent continuous and discrete sequences, and
DataSet to represent data sets comprising a set of sequences. |
| de.jstacs.data.alphabets |
Provides classes for the representation of discrete and continuous alphabets, including a
DNAAlphabet for the most common case of DNA-sequences. |
| de.jstacs.io |
Provides classes for reading data from and writing to a file and storing a number of datatypes, including all primitives, arrays of primitives, and
Storables to an XML-representation. |
| de.jstacs.parameters |
This package provides classes for parameters that establish a general convention for the description of parameters
as defined in the
Parameter-interface. |
| de.jstacs.sampling |
This package contains many classes that can be used while a sampling.
|
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
Provides
DifferentiableStatisticalModels that are directed graphical models. |
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM. |
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM as
a Bayesian tree using a number of measures to define a rating of structures. |
| de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM as
a permuted Markov model using a number of measures to define a rating of structures. |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.parameters | |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters | |
| de.jstacs.utils |
This package contains a bundle of useful classes and interfaces like ...
|
| Modifier and Type | Method and Description |
|---|---|
InstanceParameterSet<? extends InstantiableFromParameterSet> |
InstantiableFromParameterSet.getCurrentParameterSet()
Returns the
InstanceParameterSet that has been used to
instantiate the current instance of the implementing class. |
| Modifier and Type | Class and Description |
|---|---|
class |
ScoreClassifierParameterSet
A set of
Parameters for any
ScoreClassifier. |
| Modifier and Type | Class and Description |
|---|---|
class |
GenDisMixClassifierParameterSet
This class contains the parameters for the
GenDisMixClassifier. |
| Modifier and Type | Class and Description |
|---|---|
class |
SamplingGenDisMixClassifierParameterSet
ParameterSet to instantiate a SamplingGenDisMixClassifier. |
class |
SamplingScoreBasedClassifierParameterSet
ParameterSet to instantiate a SamplingScoreBasedClassifier. |
| Modifier and Type | Class and Description |
|---|---|
static class |
AlphabetContainer.AbstractAlphabetContainerParameterSet<T extends AlphabetContainer>
This class is the super class of any
InstanceParameterSet for AlphabetContainer. |
class |
AlphabetContainerParameterSet
Class for the
ParameterSet of an AlphabetContainer. |
| Modifier and Type | Method and Description |
|---|---|
LinkedList<InstanceParameterSet> |
AlphabetContainer.AlphabetContainerType.getInstanceParameterSets()
This method returns a
LinkedList of
InstanceParameterSets which can be used to create
Alphabets that can be used in a AlphabetContainer of
the given AlphabetContainer.AlphabetContainerType. |
| Modifier and Type | Method and Description |
|---|---|
abstract InstanceParameterSet<? extends Alphabet> |
Alphabet.getCurrentParameterSet() |
| Modifier and Type | Method and Description |
|---|---|
static <T extends InstantiableFromParameterSet> |
ParameterSetParser.getInstanceFromParameterSet(InstanceParameterSet<T> pars)
Returns an instance of a subclass of
InstantiableFromParameterSet
that can be instantiated by the InstanceParameterSet
pars. |
| Modifier and Type | Class and Description |
|---|---|
class |
SequenceScoringParameterSet<T extends InstantiableFromParameterSet>
Abstract class for a
ParameterSet containing all parameters necessary
to construct an Object that implements
InstantiableFromParameterSet. |
| Modifier and Type | Class and Description |
|---|---|
class |
AbstractBurnInTestParameterSet
Class for the parameters of a
AbstractBurnInTest. |
class |
VarianceRatioBurnInTestParameterSet
Class for the parameters of a
VarianceRatioBurnInTest. |
| Modifier and Type | Class and Description |
|---|---|
class |
BayesianNetworkDiffSMParameterSet
Class for the parameters of a
BayesianNetworkDiffSM. |
| Modifier and Type | Method and Description |
|---|---|
InstanceParameterSet |
BayesianNetworkDiffSM.getCurrentParameterSet() |
| Modifier and Type | Class and Description |
|---|---|
static class |
InhomogeneousMarkov.InhomogeneousMarkovParameterSet
Class for an
InstanceParameterSet that defines the parameters of
an InhomogeneousMarkov structure Measure. |
static class |
Measure.MeasureParameterSet
This class is the super class of any
ParameterSet that can be used to instantiate a Measure. |
| Modifier and Type | Method and Description |
|---|---|
InstanceParameterSet<Measure> |
Measure.getCurrentParameterSet() |
| Modifier and Type | Class and Description |
|---|---|
static class |
BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
Class for the parameters of a
BTExplainingAwayResidual structure
Measure. |
static class |
BTMutualInformation.BTMutualInformationParameterSet
Class for the parameters of a
BTMutualInformation structure
Measure. |
| Modifier and Type | Class and Description |
|---|---|
static class |
PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
Class for the parameters of a
PMMExplainingAwayResidual structure
Measure. |
static class |
PMMMutualInformation.PMMMutualInformationParameterSet
Class for the parameters of a
PMMMutualInformation structure
Measure. |
| Modifier and Type | Class and Description |
|---|---|
class |
DGTrainSMParameterSet<T extends DiscreteGraphicalTrainSM>
The super
ParameterSet for any parameter set of
a DiscreteGraphicalTrainSM. |
| Modifier and Type | Class and Description |
|---|---|
class |
HomMMParameterSet
This class implements a container for all parameters of a homogeneous Markov
model.
|
class |
HomogeneousTrainSMParameterSet
This class implements a container for all parameters of any homogeneous
model.
|
| Modifier and Type | Class and Description |
|---|---|
class |
BayesianNetworkTrainSMParameterSet
The
ParameterSet for the class
BayesianNetworkTrainSM. |
class |
FSDAGModelForGibbsSamplingParameterSet
The class for the parameters of a
FSDAGModelForGibbsSampling. |
class |
FSDAGTrainSMParameterSet
The class for the parameters of a
FSDAGTrainSM (fixed
structure directed acyclic graphical
model). |
class |
FSMEMParameterSet
The ParameterSet for a FSMEManager.
|
class |
IDGTrainSMParameterSet
This is the abstract container of parameters that is a root container for all
inhomogeneous discrete graphical model parameter containers.
|
class |
MEManagerParameterSet
The ParameterSet for any MEManager.
|
| Modifier and Type | Method and Description |
|---|---|
static <T> LinkedList<InstanceParameterSet<? extends T>> |
SubclassFinder.getInstanceParameterSets(Class<T> clazz,
String startPackage)
This method returns a list of
InstanceParameterSets that can be used to create a subclass of clazz. |
static LinkedList<Class<? extends InstanceParameterSet>> |
SubclassFinder.getParameterSetFor(Class<? extends InstantiableFromParameterSet> clazz)
Returns a
LinkedList of the classes of the
InstanceParameterSets that can be used to instantiate the
sub-class of InstantiableFromParameterSet that is given by
clazz |