|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use LogPrior | |
|---|---|
| de.jstacs.classifier.scoringFunctionBased | Provides the classes for Classifiers that are based on ScoringFunctions. |
| de.jstacs.classifier.scoringFunctionBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of NormalizableScoringFunctions by
a unified generative-discriminative learning principle |
| de.jstacs.classifier.scoringFunctionBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
| de.jstacs.classifier.scoringFunctionBased.msp | Provides an implementation of a classifier that allows to train the parameters of a set of ScoringFunctions either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL) |
| de.jstacs.classifier.scoringFunctionBased.sampling | Provides the classes for AbstractScoreBasedClassifiers that are based on SamplingScoringFunctions and that sample parameters
using the Metropolis-Hastings algorithm. |
| Uses of LogPrior in de.jstacs.classifier.scoringFunctionBased |
|---|
| Fields in de.jstacs.classifier.scoringFunctionBased declared as LogPrior | |
|---|---|
protected LogPrior |
SFBasedOptimizableFunction.prior
The prior that is used in this function. |
| Constructors in de.jstacs.classifier.scoringFunctionBased with parameters of type LogPrior | |
|---|---|
SFBasedOptimizableFunction(int threads,
ScoringFunction[] score,
Sample[] data,
double[][] weights,
LogPrior prior,
boolean norm,
boolean freeParams)
Creates an instance with the underlying infrastructure. |
|
| Uses of LogPrior in de.jstacs.classifier.scoringFunctionBased.gendismix |
|---|
| Fields in de.jstacs.classifier.scoringFunctionBased.gendismix declared as LogPrior | |
|---|---|
protected LogPrior |
GenDisMixClassifier.prior
The prior that is used in this classifier. |
| Methods in de.jstacs.classifier.scoringFunctionBased.gendismix with parameters of type LogPrior | |
|---|---|
static GenDisMixClassifier[] |
GenDisMixClassifier.create(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] weights,
NormalizableScoringFunction[]... functions)
This method creates an array of GenDisMixClassifiers by using the cross-product of the given NormalizableScoringFunctions. |
void |
GenDisMixClassifier.setPrior(LogPrior prior)
This method set a new prior that should be used for optimization. |
| Constructors in de.jstacs.classifier.scoringFunctionBased.gendismix with parameters of type LogPrior | |
|---|---|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] beta,
NormalizableScoringFunction... score)
The main constructor. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
NormalizableScoringFunction... score)
This constructor creates an instance and sets the value of the last (external) optimization. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
ScoringFunction... score)
This constructor creates an instance and sets the value of the last (external) optimization. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double genBeta,
double disBeta,
double priorBeta,
NormalizableScoringFunction... score)
This convenience constructor agglomerates the genBeta, disBeta, and priorBeta into an array and calls the main constructor. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
LearningPrinciple key,
NormalizableScoringFunction... score)
This convenience constructor creates an array of weights for an elementary learning principle and calls the main constructor. |
|
LogGenDisMixFunction(int threads,
ScoringFunction[] score,
Sample[] data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer. |
|
OneSampleLogGenDisMixFunction(int threads,
ScoringFunction[] score,
Sample data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer. |
|
| Uses of LogPrior in de.jstacs.classifier.scoringFunctionBased.logPrior |
|---|
| Subclasses of LogPrior in de.jstacs.classifier.scoringFunctionBased.logPrior | |
|---|---|
class |
CompositeLogPrior
This class implements a composite prior that can be used for NormalizableScoringFunction. |
class |
DoesNothingLogPrior
This class defines a LogPrior that does not penalize any parameter. |
class |
SeparateGaussianLogPrior
Class for a LogPrior that defines a Gaussian prior on the parameters
of a set of NormalizableScoringFunctions
and a set of class parameters. |
class |
SeparateLaplaceLogPrior
Class for a LogPrior that defines a Laplace prior on the parameters
of a set of NormalizableScoringFunctions
and a set of class parameters. |
class |
SeparateLogPrior
Abstract class for priors that penalize each parameter value independently and have some variances (and possible means) as hyperparameters. |
class |
SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter. |
| Methods in de.jstacs.classifier.scoringFunctionBased.logPrior that return LogPrior | |
|---|---|
abstract LogPrior |
LogPrior.getNewInstance()
This method returns an empty new instance of the current prior. |
LogPrior |
DoesNothingLogPrior.getNewInstance()
|
| Uses of LogPrior in de.jstacs.classifier.scoringFunctionBased.msp |
|---|
| Constructors in de.jstacs.classifier.scoringFunctionBased.msp with parameters of type LogPrior | |
|---|---|
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
ScoringFunction... score)
This constructor that creates a new MSPClassifier from a
given parameter set, a prior and ScoringFunctions for the
classes. |
|
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
ScoringFunction... score)
The default constructor that creates a new MSPClassifier from a
given parameter set, a prior and ScoringFunctions for the
classes. |
|
| Uses of LogPrior in de.jstacs.classifier.scoringFunctionBased.sampling |
|---|
| Constructors in de.jstacs.classifier.scoringFunctionBased.sampling with parameters of type LogPrior | |
|---|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
double[] beta,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta for the three components of the
LogGenDisMixFunction, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes. |
|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||