|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use SamplingScoringFunction | |
|---|---|
| de.jstacs.classifier.scoringFunctionBased.sampling | Provides the classes for AbstractScoreBasedClassifiers that are based on SamplingScoringFunctions and that sample parameters
using the Metropolis-Hastings algorithm. |
| de.jstacs.models.hmm.models | The package provides different implementations of hidden Markov models based on AbstractHMM |
| de.jstacs.scoringFunctions.directedGraphicalModels | Provides ScoringFunctions that are equivalent to directed graphical models. |
| Uses of SamplingScoringFunction in de.jstacs.classifier.scoringFunctionBased.sampling |
|---|
| Fields in de.jstacs.classifier.scoringFunctionBased.sampling declared as SamplingScoringFunction | |
|---|---|
protected SamplingScoringFunction[] |
SamplingScoreBasedClassifier.scoringFunctions
SamplingScoringFunctions |
| Constructors in de.jstacs.classifier.scoringFunctionBased.sampling with parameters of type SamplingScoringFunction | |
|---|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
double[] beta,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta for the three components of the
LogGenDisMixFunction, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes. |
|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
|
SamplingScoreBasedClassifier(SamplingScoreBasedClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
SamplingScoringFunction... scoringFunctions)
Creates a new SamplingScoreBasedClassifier using the parameters in params,
a specified BurnInTest (or null for no burn-in test), a set of sampling variances,
which may be different for each of the classes (in analogy to equivalent sample size for the Dirichlet distribution),
and set set of SamplingScoringFunctions for each of the classes. |
|
| Uses of SamplingScoringFunction in de.jstacs.models.hmm.models |
|---|
| Classes in de.jstacs.models.hmm.models that implement SamplingScoringFunction | |
|---|---|
class |
DifferentiableHigherOrderHMM
This class combines an HigherOrderHMM and a NormalizableScoringFunction by implementing some of the declared methods. |
| Uses of SamplingScoringFunction in de.jstacs.scoringFunctions.directedGraphicalModels |
|---|
| Classes in de.jstacs.scoringFunctions.directedGraphicalModels that implement SamplingScoringFunction | |
|---|---|
class |
MutableMarkovModelScoringFunction
This class implements a AbstractNormalizableScoringFunction for an inhomogeneous Markov model. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||