|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable | |
|---|---|
class |
CompositeTrainSM
This class is for modelling sequences by modelling the different positions of the each sequence by different models. |
class |
DifferentiableStatisticalModelWrapperTrainSM
This model can be used to use a DifferentiableStatisticalModel as model. |
class |
UniformTrainSM
This class represents a uniform model. |
class |
VariableLengthWrapperTrainSM
This class allows to train any TrainableStatisticalModel on DataSets of Sequences with
variable length if each individual length is at least SequenceScore.getLength(). |
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable that return AbstractTrainableStatisticalModel | |
|---|---|
AbstractTrainableStatisticalModel |
AbstractTrainableStatisticalModel.clone()
Follows the conventions of Object's clone()-method. |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
|---|---|
class |
DiscreteGraphicalTrainSM
This is the main class for all discrete graphical models (DGM). |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous | |
|---|---|
class |
HomogeneousMM
This class implements homogeneous Markov models (hMM) of arbitrary order. |
class |
HomogeneousTrainSM
This class implements homogeneous models of arbitrary order. |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous | |
|---|---|
class |
BayesianNetworkTrainSM
The class implements a Bayesian network ( StructureLearner.ModelType.BN ) of fixed order. |
class |
DAGTrainSM
The abstract class for directed acyclic graphical models ( DAGTrainSM). |
class |
FSDAGModelForGibbsSampling
This is the class for a fixed structure directed acyclic graphical model (see FSDAGTrainSM) that can be used in a Gibbs sampling. |
class |
FSDAGTrainSM
This class can be used for any discrete fixed structure directed acyclic graphical model ( FSDAGTrainSM). |
class |
FSMEManager
This class can be used for any discrete fixed structure maximum entropy model (FSMEM). |
class |
InhomogeneousDGTrainSM
This class is the main class for all inhomogeneous discrete graphical models ( InhomogeneousDGTrainSM). |
class |
MEManager
This class is the super class for all maximum entropy models |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared | |
|---|---|
class |
SharedStructureMixture
This class handles a mixture of models with the same structure that is learned via EM. |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm | |
|---|---|
class |
AbstractHMM
This class is the super class of all implementations hidden Markov models (HMMs) in Jstacs. |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models | |
|---|---|
class |
DifferentiableHigherOrderHMM
This class combines an HigherOrderHMM and a DifferentiableStatisticalModel by implementing some of the declared methods. |
class |
HigherOrderHMM
This class implements a higher order hidden Markov model. |
class |
SamplingHigherOrderHMM
|
class |
SamplingPhyloHMM
This class implements an (higher order) HMM that contains multi-dimensional emissions described by a phylogenetic tree. |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture | |
|---|---|
class |
AbstractMixtureTrainSM
This is the abstract class for all kinds of mixture models. |
class |
MixtureTrainSM
The class for a mixture model of any TrainableStatisticalModels. |
class |
StrandTrainSM
This model handles sequences that can either lie on the forward strand or on the reverse complementary strand. |
| Uses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif |
|---|
| Subclasses of AbstractTrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif | |
|---|---|
class |
HiddenMotifMixture
This is the main class that every generative motif discoverer should implement. |
class |
ZOOPSTrainSM
This class enables the user to search for a single motif in a sequence. |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||