|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use NumericalResultSet | |
|---|---|
| de.jstacs.classifiers | This package provides the framework for any classifier. |
| de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifiers that are based on SequenceScores.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
| de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | Provides the classes for AbstractScoreBasedClassifiers that are based on
SamplingDifferentiableStatisticalModels
and that sample parameters using the Metropolis-Hastings algorithm. |
| de.jstacs.classifiers.performanceMeasures | This package provides the implementations of performance measures that can be used to assess any classifier. |
| de.jstacs.classifiers.trainSMBased | Provides the classes for Classifiers that are based on TrainableStatisticalModels. |
| de.jstacs.results | This package provides classes for results and sets of results. |
| de.jstacs.sequenceScores | Provides all SequenceScores, which can be used to score a Sequence, typically using some model assumptions. |
| de.jstacs.sequenceScores.differentiable | |
| de.jstacs.sequenceScores.statisticalModels.trainable | Provides all TrainableStatisticalModels, which can
be learned from a single DataSet. |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous | |
| de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous | This package contains various inhomogeneous models. |
| de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models | The package provides different implementations of hidden Markov models based on AbstractHMM. |
| de.jstacs.sequenceScores.statisticalModels.trainable.mixture | This package is the super package for any mixture model. |
| Uses of NumericalResultSet in de.jstacs.classifiers |
|---|
| Methods in de.jstacs.classifiers that return NumericalResultSet | |
|---|---|
NumericalResultSet |
MappingClassifier.getNumericalCharacteristics()
|
abstract NumericalResultSet |
AbstractClassifier.getNumericalCharacteristics()
Returns the subset of numerical values that are also returned by AbstractClassifier.getCharacteristics(). |
| Uses of NumericalResultSet in de.jstacs.classifiers.differentiableSequenceScoreBased |
|---|
| Methods in de.jstacs.classifiers.differentiableSequenceScoreBased that return NumericalResultSet | |
|---|---|
NumericalResultSet |
ScoreClassifier.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
|---|
| Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling that return NumericalResultSet | |
|---|---|
NumericalResultSet |
SamplingScoreBasedClassifier.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.classifiers.performanceMeasures |
|---|
| Methods in de.jstacs.classifiers.performanceMeasures that return NumericalResultSet | |
|---|---|
NumericalResultSet |
NumericalPerformanceMeasure.compute(double[][][] classSpecificScores)
This method allows to compute the performance measure of given class specific scores. |
NumericalResultSet |
ClassificationRate.compute(double[][][] classSpecificScores)
|
NumericalResultSet |
AucROC.compute(double[][][] classSpecificScores)
|
NumericalResultSet |
AucPR.compute(double[][][] classSpecificScores)
|
NumericalResultSet |
AbstractNumericalTwoClassPerformanceMeasure.compute(double[][][] classSpecificScores)
|
NumericalResultSet |
NumericalPerformanceMeasure.compute(double[][][] classSpecificScores,
double[][] weights)
This method allows to compute the performance measure of given class specific scores. |
NumericalResultSet |
ClassificationRate.compute(double[][][] classSpecificScores,
double[][] weights)
|
NumericalResultSet |
AucROC.compute(double[][][] classSpecificScores,
double[][] weights)
|
NumericalResultSet |
AucPR.compute(double[][][] classSpecificScores,
double[][] weights)
|
NumericalResultSet |
AbstractNumericalTwoClassPerformanceMeasure.compute(double[][][] classSpecificScores,
double[][] weights)
|
NumericalResultSet |
NumericalPerformanceMeasure.compute(double[] sortedScoresClass0,
double[] sortedScoresClass1)
This method allows to compute the performance measure of given sorted score ratios. |
NumericalResultSet |
ClassificationRate.compute(double[] sortedScoresClass0,
double[] sortedScoresClass1)
|
NumericalResultSet |
AucROC.compute(double[] sortedScoresClass0,
double[] sortedScoresClass1)
|
NumericalResultSet |
AucPR.compute(double[] sortedScoresClass0,
double[] sortedScoresClass1)
|
NumericalResultSet |
AbstractNumericalTwoClassPerformanceMeasure.compute(double[] sortedScoresClass0,
double[] sortedScoresClass1)
|
NumericalResultSet |
SensitivityForFixedSpecificity.compute(double[] sortedScoresClass0,
double[] weightClass0,
double[] sortedScoresClass1,
double[] weightClass1)
|
NumericalResultSet |
PositivePredictiveValueForFixedSensitivity.compute(double[] sortedScoresClass0,
double[] weightsClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
|
NumericalResultSet |
NumericalPerformanceMeasure.compute(double[] sortedScoresClass0,
double[] weightsClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
This method allows to compute the performance measure of given sorted score ratios. |
NumericalResultSet |
MaximumNumericalTwoClassMeasure.compute(double[] sortedScoresClass0,
double[] weightsClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
|
NumericalResultSet |
FalsePositiveRateForFixedSensitivity.compute(double[] sortedScoresClass0,
double[] weightsClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
|
NumericalResultSet |
ClassificationRate.compute(double[] sortedScoresClass0,
double[] weightsClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
|
NumericalResultSet |
AucROC.compute(double[] sortedScoresClass0,
double[] weightsClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
|
NumericalResultSet |
AucPR.compute(double[] sortedScoresClass0,
double[] weightsClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
|
abstract NumericalResultSet |
AbstractNumericalTwoClassPerformanceMeasure.compute(double[] sortedScoresClass0,
double[] weightClass0,
double[] sortedScoresClass1,
double[] weightsClass1)
|
| Uses of NumericalResultSet in de.jstacs.classifiers.trainSMBased |
|---|
| Methods in de.jstacs.classifiers.trainSMBased that return NumericalResultSet | |
|---|---|
NumericalResultSet |
TrainSMBasedClassifier.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.results |
|---|
| Subclasses of NumericalResultSet in de.jstacs.results | |
|---|---|
class |
MeanResultSet
Class that computes the mean and the standard error of a series of NumericalResultSets. |
| Methods in de.jstacs.results that return NumericalResultSet | |
|---|---|
NumericalResultSet |
MeanResultSet.getStatistics()
Returns the means and (if possible the) standard errors of the results in this MeanResultSet as a new NumericalResultSet. |
| Methods in de.jstacs.results with parameters of type NumericalResultSet | |
|---|---|
void |
MeanResultSet.addResults(NumericalResultSet... rs)
Adds NumericalResultSets to this MeanResultSet. |
| Uses of NumericalResultSet in de.jstacs.sequenceScores |
|---|
| Methods in de.jstacs.sequenceScores that return NumericalResultSet | |
|---|---|
NumericalResultSet |
SequenceScore.getNumericalCharacteristics()
Returns the subset of numerical values that are also returned by SequenceScore.getCharacteristics(). |
| Uses of NumericalResultSet in de.jstacs.sequenceScores.differentiable |
|---|
| Methods in de.jstacs.sequenceScores.differentiable that return NumericalResultSet | |
|---|---|
NumericalResultSet |
AbstractDifferentiableSequenceScore.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.sequenceScores.statisticalModels.trainable |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable that return NumericalResultSet | |
|---|---|
NumericalResultSet |
VariableLengthWrapperTrainSM.getNumericalCharacteristics()
|
NumericalResultSet |
UniformTrainSM.getNumericalCharacteristics()
|
NumericalResultSet |
DifferentiableStatisticalModelWrapperTrainSM.getNumericalCharacteristics()
|
NumericalResultSet |
CompositeTrainSM.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous that return NumericalResultSet | |
|---|---|
NumericalResultSet |
HomogeneousTrainSM.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous that return NumericalResultSet | |
|---|---|
NumericalResultSet |
MEManager.getNumericalCharacteristics()
|
NumericalResultSet |
DAGTrainSM.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models that return NumericalResultSet | |
|---|---|
NumericalResultSet |
HigherOrderHMM.getNumericalCharacteristics()
|
| Uses of NumericalResultSet in de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
|---|
| Methods in de.jstacs.sequenceScores.statisticalModels.trainable.mixture that return NumericalResultSet | |
|---|---|
NumericalResultSet |
AbstractMixtureTrainSM.getNumericalCharacteristics()
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||