|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable |
|---|
| Subinterfaces of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable | |
|---|---|
interface |
DifferentiableStatisticalModel
The interface for normalizable DifferentiableSequenceScores. |
interface |
SamplingDifferentiableStatisticalModel
Interface for DifferentiableStatisticalModels that can be used for
Metropolis-Hastings sampling in a SamplingScoreBasedClassifier. |
interface |
VariableLengthDiffSM
This is an interface for all DifferentiableStatisticalModels that allow to score
subsequences of arbitrary length. |
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable that implement StatisticalModel | |
|---|---|
class |
AbstractDifferentiableStatisticalModel
This class is the main part of any ScoreClassifier. |
class |
AbstractVariableLengthDiffSM
This abstract class implements some methods declared in DifferentiableStatisticalModel based on the declaration
of methods in VariableLengthDiffSM. |
class |
CyclicMarkovModelDiffSM
This scoring function implements a cyclic Markov model of arbitrary order and periodicity for any sequence length. |
class |
IndependentProductDiffSM
This class enables the user to model parts of a sequence independent of each other. |
class |
MappingDiffSM
This class implements a DifferentiableStatisticalModel that works on
mapped Sequences. |
class |
MarkovRandomFieldDiffSM
This class implements the scoring function for any MRF (Markov Random Field). |
class |
NormalizedDiffSM
This class makes an unnormalized DifferentiableStatisticalModel to a normalized DifferentiableStatisticalModel. |
class |
UniformDiffSM
This DifferentiableStatisticalModel does nothing. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels that implement StatisticalModel | |
|---|---|
class |
BayesianNetworkDiffSM
This class implements a scoring function that is a moral directed graphical model, i.e. |
class |
MarkovModelDiffSM
This class implements a AbstractDifferentiableStatisticalModel for an inhomogeneous Markov model. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous that implement StatisticalModel | |
|---|---|
class |
HomogeneousDiffSM
This is the main class for all homogeneous DifferentiableSequenceScores. |
class |
HomogeneousMM0DiffSM
This scoring function implements a homogeneous Markov model of order zero (hMM(0)) for a fixed sequence length. |
class |
HomogeneousMMDiffSM
This scoring function implements a homogeneous Markov model of arbitrary order for any sequence length. |
class |
UniformHomogeneousDiffSM
This scoring function does nothing. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture that implement StatisticalModel | |
|---|---|
class |
AbstractMixtureDiffSM
This main abstract class for any mixture scoring function (e.g. |
class |
MixtureDiffSM
This class implements a real mixture model. |
class |
StrandDiffSM
This class enables the user to search on both strand. |
class |
VariableLengthMixtureDiffSM
This class implements a mixture of VariableLengthDiffSM by extending MixtureDiffSM and implementing the methods of VariableLengthDiffSM. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif that implement StatisticalModel | |
|---|---|
class |
DurationDiffSM
This class is the super class for all one dimensional position scoring functions that can be used as durations for semi Markov models. |
class |
ExtendedZOOPSDiffSM
This class handles mixtures with at least one hidden motif. |
class |
MixtureDurationDiffSM
This class implements a mixture of DurationDiffSMs. |
class |
PositionDiffSM
This class implements a position scoring function that enables the user to get a score without using a Sequence object. |
class |
SkewNormalLikeDurationDiffSM
This class implements a skew normal like discrete truncated distribution. |
class |
UniformDurationDiffSM
This scoring function implements a uniform distribution for positions. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable |
|---|
| Subinterfaces of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable | |
|---|---|
interface |
TrainableStatisticalModel
This interface defines all methods for a probabilistic model. |
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable that implement StatisticalModel | |
|---|---|
class |
AbstractTrainableStatisticalModel
Abstract class for a model for pattern recognition. |
class |
CompositeTrainSM
This class is for modelling sequences by modelling the different positions of the each sequence by different models. |
class |
DifferentiableStatisticalModelWrapperTrainSM
This model can be used to use a DifferentiableStatisticalModel as model. |
class |
UniformTrainSM
This class represents a uniform model. |
class |
VariableLengthWrapperTrainSM
This class allows to train any TrainableStatisticalModel on DataSets of Sequences with
variable length if each individual length is at least SequenceScore.getLength(). |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete that implement StatisticalModel | |
|---|---|
class |
DiscreteGraphicalTrainSM
This is the main class for all discrete graphical models (DGM). |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous that implement StatisticalModel | |
|---|---|
class |
HomogeneousMM
This class implements homogeneous Markov models (hMM) of arbitrary order. |
class |
HomogeneousTrainSM
This class implements homogeneous models of arbitrary order. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous that implement StatisticalModel | |
|---|---|
class |
BayesianNetworkTrainSM
The class implements a Bayesian network ( StructureLearner.ModelType.BN ) of fixed order. |
class |
DAGTrainSM
The abstract class for directed acyclic graphical models ( DAGTrainSM). |
class |
FSDAGModelForGibbsSampling
This is the class for a fixed structure directed acyclic graphical model (see FSDAGTrainSM) that can be used in a Gibbs sampling. |
class |
FSDAGTrainSM
This class can be used for any discrete fixed structure directed acyclic graphical model ( FSDAGTrainSM). |
class |
FSMEManager
This class can be used for any discrete fixed structure maximum entropy model (FSMEM). |
class |
InhomogeneousDGTrainSM
This class is the main class for all inhomogeneous discrete graphical models ( InhomogeneousDGTrainSM). |
class |
MEManager
This class is the super class for all maximum entropy models |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared that implement StatisticalModel | |
|---|---|
class |
SharedStructureMixture
This class handles a mixture of models with the same structure that is learned via EM. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.hmm that implement StatisticalModel | |
|---|---|
class |
AbstractHMM
This class is the super class of all implementations hidden Markov models (HMMs) in Jstacs. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models that implement StatisticalModel | |
|---|---|
class |
DifferentiableHigherOrderHMM
This class combines an HigherOrderHMM and a DifferentiableStatisticalModel by implementing some of the declared methods. |
class |
HigherOrderHMM
This class implements a higher order hidden Markov model. |
class |
SamplingHigherOrderHMM
|
class |
SamplingPhyloHMM
This class implements an (higher order) HMM that contains multi-dimensional emissions described by a phylogenetic tree. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.mixture that implement StatisticalModel | |
|---|---|
class |
AbstractMixtureTrainSM
This is the abstract class for all kinds of mixture models. |
class |
MixtureTrainSM
The class for a mixture model of any TrainableStatisticalModels. |
class |
StrandTrainSM
This model handles sequences that can either lie on the forward strand or on the reverse complementary strand. |
| Uses of StatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif |
|---|
| Classes in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif that implement StatisticalModel | |
|---|---|
class |
HiddenMotifMixture
This is the main class that every generative motif discoverer should implement. |
class |
ZOOPSTrainSM
This class enables the user to search for a single motif in a sequence. |
| Uses of StatisticalModel in de.jstacs.utils |
|---|
| Methods in de.jstacs.utils with parameters of type StatisticalModel | |
|---|---|
static DataSet |
DiscreteInhomogenousDataSetEmitter.emitDataSet(StatisticalModel m,
int n)
This method emits a data set with n |
static double |
StatisticalModelTester.getKLDivergence(StatisticalModel m1,
StatisticalModel m2,
int length)
Returns the Kullback-Leibler-divergence D(p_m1||p_m2). |
static double |
StatisticalModelTester.getLogLikelihood(StatisticalModel m,
DataSet data)
Returns the log-likelihood of a DataSet data for a
given model m. |
static double |
StatisticalModelTester.getLogLikelihood(StatisticalModel m,
DataSet data,
double[] weights)
Returns the log-likelihood of a DataSet data for a
given model m. |
static double |
StatisticalModelTester.getMarginalDistribution(StatisticalModel m,
int[] constraint)
This method computes the marginal distribution for any discrete model m and all sequences that fulfill the constraint
, if possible. |
static double |
StatisticalModelTester.getMaxOfDeviation(StatisticalModel m1,
StatisticalModel m2,
int length)
This method computes the maximum deviation between the probabilities for all sequences of length for discrete models m1
and m2. |
static double |
StatisticalModelTester.getShannonEntropy(StatisticalModel m,
int length)
This method computes the Shannon entropy for any discrete model m and all sequences of length, if possible. |
static double |
StatisticalModelTester.getShannonEntropyInBits(StatisticalModel m,
int length)
This method computes the Shannon entropy in bits for any discrete model m and all sequences of length, if possible. |
static double |
StatisticalModelTester.getSumOfDeviation(StatisticalModel m1,
StatisticalModel m2,
int length)
This method computes the sum of deviations between the probabilities for all sequences of length for discrete models m1
and m2. |
static double |
StatisticalModelTester.getSumOfDistribution(StatisticalModel m,
int length)
This method computes the marginal distribution for any discrete model m and all sequences of length, if possible. |
static double |
StatisticalModelTester.getSymKLDivergence(StatisticalModel m1,
StatisticalModel m2,
int length)
Returns the difference of the Kullback-Leibler-divergences, i.e. |
static double |
StatisticalModelTester.getValueOfAIC(StatisticalModel m,
DataSet s,
int k)
This method computes the value of Akaikes Information Criterion (AIC). |
static double |
StatisticalModelTester.getValueOfBIC(StatisticalModel m,
DataSet s,
int k)
This method computes the value of the Bayesian Information Criterion (BIC). |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||