- s1 - Variable in class de.jstacs.algorithms.alignment.Alignment
-
The first sequence
- s2 - Variable in class de.jstacs.algorithms.alignment.Alignment
-
The second sequence
- SafeOutputStream - Class in de.jstacs.utils
-
This class is for any output.
- sameLength() - Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
-
Returns true if for test and train data set the sequences of
the non-reference classes have the same length as the corresponding
sequence of the reference class.
- sample(SamplingScoreBasedClassifier.DiffSMSamplingComponent, Function) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
- sample - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
The data set that was used in the last training.
- Sampled_RepeatedHoldOutAssessParameterSet - Class in de.jstacs.classifiers.assessment
-
- Sampled_RepeatedHoldOutAssessParameterSet() - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
-
- Sampled_RepeatedHoldOutAssessParameterSet(StringBuffer) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
-
The standard constructor for the interface
Storable.
- Sampled_RepeatedHoldOutAssessParameterSet(DataSet.PartitionMethod, int, boolean, int, int, double, boolean) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
-
- Sampled_RepeatedHoldOutExperiment - Class in de.jstacs.classifiers.assessment
-
This class is a special
ClassifierAssessment that partitions the data
of a user-specified reference class (typically the smallest class) and
data sets non-overlapping for all other classes, so that one gets the same
number of sequences (and the same lengths of the sequences) in each train and
test data set.
- Sampled_RepeatedHoldOutExperiment(AbstractClassifier[], TrainableStatisticalModel[][], boolean, boolean) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
-
- Sampled_RepeatedHoldOutExperiment(AbstractClassifier...) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
-
- Sampled_RepeatedHoldOutExperiment(boolean, TrainableStatisticalModel[]...) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
-
- Sampled_RepeatedHoldOutExperiment(AbstractClassifier[], boolean, TrainableStatisticalModel[]...) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
-
- sampleNSteps(Function, SamplingScoreBasedClassifier.DiffSMSamplingComponent, BurnInTest, int, SamplingScoreBasedClassifier.SamplingScheme) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
Samples a predefined number of steps appended to the current sampling
- samplePath(IntList, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
-
This method samples a valid path for the given sequence seq using the internal parameters.
- SamplingComponent - Interface in de.jstacs.sampling
-
This interface defines methods that are used during a sampling.
- SamplingDifferentiableStatisticalModel - Interface in de.jstacs.sequenceScores.statisticalModels.differentiable
-
- SamplingEmission - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions
-
- SamplingFromStatistic - Interface in de.jstacs.sampling
-
This is the interface for sampling based on a sufficient statistic.
- SamplingGenDisMixClassifier - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
-
A classifier that samples its parameters from a
LogGenDisMixFunction using the
Metropolis-Hastings algorithm.
- SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet, BurnInTest, double[], LogPrior, double[], SamplingDifferentiableStatisticalModel...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
-
Creates a new
SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights
beta for the three components of the
LogGenDisMixFunction, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes.
- SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet, BurnInTest, double[], LogPrior, LearningPrinciple, SamplingDifferentiableStatisticalModel...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
-
Creates a new
SamplingGenDisMixClassifier using the external parameters
params, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes.
- SamplingGenDisMixClassifier(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
-
- SamplingGenDisMixClassifierParameterSet - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
-
- SamplingGenDisMixClassifierParameterSet(AlphabetContainer, int, int, SamplingScoreBasedClassifier.SamplingScheme, int, int, boolean, boolean, String, int) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
-
- SamplingGenDisMixClassifierParameterSet(Class<? extends SamplingScoreBasedClassifier>, AlphabetContainer, int, int, SamplingScoreBasedClassifier.SamplingScheme, int, int, boolean, boolean, String, int) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
-
- SamplingGenDisMixClassifierParameterSet(AlphabetContainer, int, int, int, int, String, int) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
-
- SamplingHigherOrderHMM - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models
-
- SamplingHigherOrderHMM(SamplingHMMTrainingParameterSet, String[], int[], boolean[], SamplingEmission[], TransitionElement...) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
-
This is the main constructor.
- SamplingHigherOrderHMM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
-
The standard constructor for the interface
Storable.
- SamplingHigherOrderHMM.ViterbiComputation - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models
-
Emumeration of all possible Viterbi-Path methods
- SamplingHMMTrainingParameterSet - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training
-
This class contains the parameters for training training an
AbstractHMM using a sampling strategy.
- SamplingHMMTrainingParameterSet() - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
-
This is the empty constructor that can be used to fill the parameters after creation.
- SamplingHMMTrainingParameterSet(int, int, int, AbstractBurnInTestParameterSet) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
-
This is the main constructor creating an already filled parameter set for training an
AbstractHMM using a sampling strategy.
- SamplingHMMTrainingParameterSet(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
-
The standard constructor for the interface
Storable.
- samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
-
The index of the current sampling.
- samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
The index of the current sampling.
- samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
-
The index of the current sampling.
- samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
The current index of the sampling.
- SamplingPhyloHMM - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models
-
This class implements an (higher order) HMM that contains multi-dimensional emissions described
by a phylogenetic tree.
- SamplingPhyloHMM(SamplingHMMTrainingParameterSet, String[], int[], boolean[], PhyloDiscreteEmission[], TransitionElement...) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
-
This is the main constructor for a hidden markov model with phylogenetic emission(s)
This model can be trained using a metropolis hastings algorithm
- SamplingPhyloHMM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
-
The standard constructor for the interface
Storable.
- SamplingScoreBasedClassifier - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
-
- SamplingScoreBasedClassifier(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
- SamplingScoreBasedClassifier(SamplingScoreBasedClassifierParameterSet, BurnInTest, double[], SamplingDifferentiableStatisticalModel...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
- SamplingScoreBasedClassifier.DiffSMSamplingComponent - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
-
The
SamplingComponent that handles storing and loading sampled parameters values
to and from files.
- SamplingScoreBasedClassifier.SamplingScheme - Enum in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
-
Sampling scheme for sampling the parameters of the scoring functions.
- SamplingScoreBasedClassifierParameterSet - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
-
- SamplingScoreBasedClassifierParameterSet(Class<? extends SamplingScoreBasedClassifier>, AlphabetContainer, int, int, SamplingScoreBasedClassifier.SamplingScheme, int, int, boolean, boolean, String) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
-
- SamplingScoreBasedClassifierParameterSet(Class<? extends SamplingScoreBasedClassifier>, AlphabetContainer, int, int, int, int, String) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
-
- SamplingState - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
-
- samplingStopped() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier.DiffSMSamplingComponent
-
- samplingStopped() - Method in interface de.jstacs.sampling.SamplingComponent
-
- samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
-
- samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
- samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
-
- samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
-
- samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
-
- samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
- SamplingTransition - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions
-
This interface declares all method used during a sampling.
- satisfiesSpecificConstraint(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
-
This method returns the index of the specific constraint that is
fulfilled by the
Sequence seq beginning at position
start.
- satisfiesSpecificConstraint(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
-
- satisfiesSpecificConstraint(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhConstraint
-
- satisfiesSpecificConstraint(SequenceIterator) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
-
Returns the index of the constraint that is satisfied by
sequence.
- save(File) - Method in class de.jstacs.data.DataSet
-
This method writes the
DataSet to a file
f.
- save(OutputStream, char, SequenceAnnotationParser) - Method in class de.jstacs.data.DataSet
-
- saveParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier.DiffSMSamplingComponent
-
Saves the parameter values of all parameter files to
a
StringBuffer representing these as XML.
- ScaledTransitionElement - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements
-
Scaled transition element for an HMM with scaled transition matrices (SHMM).
- ScaledTransitionElement(int[], int[], double[], double, double[], String) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
-
Creates an object representing the transition probabilities of a Hidden Markov TrainableStatisticalModel with scaled transition matrices (SHMM) for the given context.
- ScaledTransitionElement(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
-
The standard constructor for the interface
Storable.
- scalingFactor - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
-
The maximal scaling factor.
- scalingFactor - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
-
The scaling factors of the individual transition classes.
- score - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
-
- score - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
-
The internally used scoring functions.
- score - Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
-
- score - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
-
The type of the score that is evaluated
- ScoreClassifier - Class in de.jstacs.classifiers.differentiableSequenceScoreBased
-
- ScoreClassifier(ScoreClassifierParameterSet, double, DifferentiableSequenceScore...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
-
- ScoreClassifier(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
-
The standard constructor for the interface
Storable.
- ScoreClassifierParameterSet - Class in de.jstacs.classifiers.differentiableSequenceScoreBased
-
- ScoreClassifierParameterSet(Class<? extends ScoreClassifier>, boolean, AlphabetContainer.AlphabetContainerType, boolean) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
-
- ScoreClassifierParameterSet(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
-
The standard constructor for the interface
Storable.
- ScoreClassifierParameterSet(Class<? extends ScoreClassifier>, AlphabetContainer, int, byte, double, double, double, boolean, OptimizableFunction.KindOfParameter) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
-
The constructor for a simple, instantiated parameter set.
- ScoreClassifierParameterSet(Class<? extends ScoreClassifier>, AlphabetContainer, int, byte, AbstractTerminationCondition, double, double, boolean, OptimizableFunction.KindOfParameter) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
-
The constructor for a simple, instantiated parameter set.
- scoringFunctions - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
- sd(int, int) - Method in class de.jstacs.utils.DoubleList
-
This method computes the standard deviation of a part of the list.
- sd(int, int, double[]) - Static method in class de.jstacs.utils.ToolBox
-
This method returns the standard deviation of the elements of an array
between start and end.
- SectionDefinedAlphabetParameterSet(AlphabetContainer.AlphabetContainerType) - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
-
- SectionDefinedAlphabetParameterSet() - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
-
- SectionDefinedAlphabetParameterSet(Alphabet[], int[]) - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
-
- SectionDefinedAlphabetParameterSet(StringBuffer) - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
-
The standard constructor for the interface
Storable
.
- SelectionParameter - Class in de.jstacs.parameters
-
Class for a collection parameter, i.e.
- SelectionParameter(DataType, String[], Object[], String, String, boolean) - Constructor for class de.jstacs.parameters.SelectionParameter
-
- SelectionParameter(DataType, String[], Object[], String[], String, String, boolean) - Constructor for class de.jstacs.parameters.SelectionParameter
-
- SelectionParameter(String, String, boolean, ParameterSet...) - Constructor for class de.jstacs.parameters.SelectionParameter
-
- SelectionParameter(String, String, boolean, Class<? extends ParameterSet>...) - Constructor for class de.jstacs.parameters.SelectionParameter
-
- SelectionParameter(StringBuffer) - Constructor for class de.jstacs.parameters.SelectionParameter
-
The standard constructor for the interface
Storable.
- SensitivityForFixedSpecificity - Class in de.jstacs.classifiers.performanceMeasures
-
This class implements the sensitivity for a fixed specificity.
- SensitivityForFixedSpecificity() - Constructor for class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
-
- SensitivityForFixedSpecificity(double) - Constructor for class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
-
- SensitivityForFixedSpecificity(StringBuffer) - Constructor for class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
-
The standard constructor for the interface
Storable.
- SeparateGaussianLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
-
- SeparateGaussianLogPrior(double[], double[], double[]) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
-
Creates a new
SeparateGaussianLogPrior from a set of base
variances
vars, a set of class variances
classVars and a set of class means
classMus.
- SeparateGaussianLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
-
The standard constructor for the interface
Storable.
- SeparateLaplaceLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
-
- SeparateLaplaceLogPrior(double[], double[], double[]) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
-
Creates a new
SeparateLaplaceLogPrior from a set of base
variances
vars, a set of class variances
classVars and a set of class means
classMus.
- SeparateLaplaceLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
-
The standard constructor for the interface
Storable.
- SeparateLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
-
Abstract class for priors that penalize each parameter value independently
and have some variances (and possible means) as hyperparameters.
- SeparateLogPrior(double[], double[], double[]) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
-
Creates a new
SeparateLogPrior using the class-specific base
variances
vars, the variances
classVars and the
means
classMus for the class parameters.
- SeparateLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
-
The standard constructor for the interface
Storable.
- SeqLogoPlotGenerator(double[][], int) - Constructor for class de.jstacs.utils.SeqLogoPlotter.SeqLogoPlotGenerator
-
- SeqLogoPlotGenerator(StringBuffer) - Constructor for class de.jstacs.utils.SeqLogoPlotter.SeqLogoPlotGenerator
-
- SeqLogoPlotter - Class in de.jstacs.utils
-
Class with static methods for plotting sequence logos of DNA motifs, i.e., position weight matrices defined over a
DNAAlphabet.
- SeqLogoPlotter() - Constructor for class de.jstacs.utils.SeqLogoPlotter
-
- SeqLogoPlotter.SeqLogoPlotGenerator - Class in de.jstacs.utils
-
- seqs - Variable in class de.jstacs.clustering.distances.SequenceScoreDistance
-
The De Bruijn sequences
- Sequence<T> - Class in de.jstacs.data.sequences
-
This is the main class for all sequences.
- Sequence(AlphabetContainer, SequenceAnnotation[]) - Constructor for class de.jstacs.data.sequences.Sequence
-
- Sequence.CompositeSequence<T> - Class in de.jstacs.data.sequences
-
- Sequence.RecursiveSequence<T> - Class in de.jstacs.data.sequences
-
This is the main class for subsequences, composite sequences, ...
- Sequence.SubSequence<T> - Class in de.jstacs.data.sequences
-
This class handles subsequences.
- SequenceAnnotation - Class in de.jstacs.data.sequences.annotation
-
Class for a general annotation of a
Sequence.
- SequenceAnnotation(String, String, Result) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
-
- SequenceAnnotation(String, String, Result[]...) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
-
- SequenceAnnotation(String, String, SequenceAnnotation[], Result...) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
-
- SequenceAnnotation(String, String, Collection<? extends Result>) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
-
- SequenceAnnotation(StringBuffer) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
-
The standard constructor for the interface
Storable.
- SequenceAnnotationParser - Interface in de.jstacs.data.sequences.annotation
-
- SequenceEnumeration - Class in de.jstacs.data
-
- SequenceEnumeration(Sequence...) - Constructor for class de.jstacs.data.SequenceEnumeration
-
This constructor creates an instance based on the user-specified
Sequences
sequences.
- SequenceEnumeration(Collection<Sequence>) - Constructor for class de.jstacs.data.SequenceEnumeration
-
This constructor creates an instance based on the user-specified
Collection of
Sequences
sequences.
- SequenceIterator - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
-
This class is used to iterate over a discrete sequence.
- SequenceIterator(int) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
-
- sequenceIteratorToDataSet(SequenceIterator, FeatureFilter, AlphabetContainer) - Static method in class de.jstacs.data.bioJava.BioJavaAdapter
-
- SequenceScore - Interface in de.jstacs.sequenceScores
-
This interface defines a scoring function that assigns a score to each input sequence.
- SequenceScoreDistance - Class in de.jstacs.clustering.distances
-
Class for a distance metric between
StatisticalModels based on the correlation of score
profiles on De Bruijn sequences.
- SequenceScoreDistance(DiscreteAlphabet, int, boolean) - Constructor for class de.jstacs.clustering.distances.SequenceScoreDistance
-
Creates a new distance.
- SequenceScoreDistance(CyclicSequenceAdaptor[], boolean) - Constructor for class de.jstacs.clustering.distances.SequenceScoreDistance
-
Creates a new distance for a given set of sequences.
- SequenceScoringParameterSet<T extends InstantiableFromParameterSet> - Class in de.jstacs.parameters
-
- SequenceScoringParameterSet(Class<T>, AlphabetContainer.AlphabetContainerType, boolean) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
-
- SequenceScoringParameterSet(Class<T>, AlphabetContainer.AlphabetContainerType, boolean, boolean) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
-
- SequenceScoringParameterSet(StringBuffer) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
-
The standard constructor for the interface
Storable.
- SequenceScoringParameterSet(Class<T>, AlphabetContainer, int, boolean) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
-
- SequenceScoringParameterSet(Class<T>, AlphabetContainer) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
-
- seqWeights - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
The weights of the (sub-)sequence used to train the components (internal models).
- set(double[], double[]) - Method in class de.jstacs.algorithms.optimization.OneDimensionalSubFunction
-
Sets the current values and direction.
- set() - Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition
-
Deprecated.
- set() - Method in class de.jstacs.algorithms.optimization.termination.AbstractTerminationCondition
-
- set() - Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition
-
- set() - Method in class de.jstacs.algorithms.optimization.termination.IterationCondition
-
- set() - Method in class de.jstacs.algorithms.optimization.termination.MultipleIterationsCondition
-
- set() - Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
-
- set() - Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
-
- set() - Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition
-
- set() - Method in class de.jstacs.algorithms.optimization.termination.TimeCondition
-
- set(int, T) - Method in class de.jstacs.AnnotatedEntityList
-
- set(boolean, DifferentiableSequenceScore...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
-
- set(boolean, DifferentiableSequenceScore...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
-
- set(boolean, DifferentiableSequenceScore...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
-
- set(int, Parameter) - Method in class de.jstacs.parameters.ParameterSet.ParameterList
-
- set(int, double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
-
Sets the (conditional) probability parameters at a specific position and sets the mixture parameters
(largely) to the unconditional PWM component.
- set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
-
Sets the parameters as internal parameters and does some essential
computations.
- set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
-
- set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
-
- set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
-
- set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
-
- set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSMEManager
-
- set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
-
- setAlpha(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
Sets the parameter of the Dirichlet distribution which is used when you
invoke train to init the gammas.
- setBounds(int[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
-
This method sets the bounds for each position.
- setClassWeights(boolean, double...) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
-
Sets new class weights.
- setClassWeights(boolean, double[], int) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
-
Sets new class weights.
- setCurrent(double) - Method in class de.jstacs.tools.ProgressUpdater
-
Sets the value corresponding to the current progress
- setCurrentLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
-
This method sets the current used number of selected elements.
- setCurrentSamplingIndex(int) - Method in class de.jstacs.sampling.AbstractBurnInTest
-
- setCurrentSamplingIndex(int) - Method in interface de.jstacs.sampling.BurnInTest
-
This method sets the value of the current sampling.
- setCurrentSamplingIndex(int) - Method in class de.jstacs.sampling.SimpleBurnInTest
-
Deprecated.
- setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
-
- setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
-
- setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.OneDataSetLogGenDisMixFunction
-
- setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
-
This method sets the data set and the sequence weights to be used.
- setDefault(Object) - Method in class de.jstacs.parameters.AbstractSelectionParameter
-
- setDefault(Object) - Method in class de.jstacs.parameters.EnumParameter
-
- setDefault(Object) - Method in class de.jstacs.parameters.FileParameter
-
- setDefault(Object) - Method in class de.jstacs.parameters.MultiSelectionParameter
-
- setDefault(Object) - Method in class de.jstacs.parameters.Parameter
-
Sets the default value of the
Parameter to
defaultValue.
- setDefault(Object) - Method in class de.jstacs.parameters.ParameterSetContainer
-
- setDefault(Object) - Method in class de.jstacs.parameters.RangeParameter
-
- setDefault(Object) - Method in class de.jstacs.parameters.SelectionParameter
-
- setDefault(Object) - Method in class de.jstacs.parameters.SimpleParameter
-
- setDefaultSelected(int[]) - Method in class de.jstacs.parameters.MultiSelectionParameter
-
- setDeleteOnExit(boolean) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
If set to true (which is the default), the temporary files for storing sampled parameter
values are deleted on exit of the program.
- setElements() - Method in class de.jstacs.clustering.hierachical.ClusterTree
-
Sets the copy references of the leave nodes of this cluster
tree to the elements of its leaves in the current order.
- setEss(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DGTrainSMParameterSet
-
This method can be used to set the ess (equivalent sample
size) of this parameter set.
- setESS(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
-
- setExpLambda(int, double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
-
Sets the exponential value of

.
(Additionally it sets the value of

to the logarithmic value of
val:

.)
- setExport(boolean) - Method in class de.jstacs.results.ListResult
-
- setExtendedType(String) - Method in class de.jstacs.parameters.FileParameter
-
- setExtendedType(String) - Method in class de.jstacs.results.TextResult
-
- setExtension(String) - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
-
- setExtension(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
-
Sets the filename extension
- setFilename(String) - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
-
- setFilename(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
-
Sets the file
- setForwardProb(double) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
-
This method can be used to set the forward strand probability.
- setFrameParameterOptimization(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
-
This method enables the user to choose whether the frame parameters should be optimized or not.
- setFreqs(String[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
-
This method is used to restore the values of a Gibbs Sampling run.
- setFromStoredParameters(ParameterSet) - Method in class de.jstacs.tools.ToolResult
-
Sets the values of all parameters in other to those stored in the internal parameters
that have been supplied upon construction.
- setFurtherInformation(StringBuffer) - Method in class de.jstacs.sampling.AbstractBurnInTest
-
- setFurtherInformation(StringBuffer) - Method in class de.jstacs.sampling.VarianceRatioBurnInTest
-
- setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
-
This method replaces the internal model information with those from a
StringBuffer.
- setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
-
- setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
-
- setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
-
- setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
-
- setHelp(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
-
Sets the help, i.e., a more detailed description of the program
to help.
- setHelp(File) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
-
Sets the help, i.e., a more detailed description of the program
to the contents of helpfile.
- setHiddenParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
-
This method sets the hidden parameters of the model.
- setId(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
-
This method set the ID of the current PhyloNode
The ID should be unique in the PhyloTree
- setIndeterminate() - Method in class de.jstacs.tools.ProgressUpdater
-
Sets the progress to indeterminate.
- setIndexOfDescendantTransitionElement(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
-
This method sets the index of the descendant transition element for the child with index index.
- setInitParameters(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
Sets the initial parameters of the sampling to parameters.
- setLambda(int, double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
-
Sets the value of

.
(Additionally it sets the exponential value of

to the exponential value of
val:

.
- setLast(double) - Method in class de.jstacs.tools.ProgressUpdater
-
Sets the value that is reached upon completion of the monitored task.
- setLastDistance(double) - Method in class de.jstacs.algorithms.optimization.ConstantStartDistance
-
- setLastDistance(double) - Method in class de.jstacs.algorithms.optimization.LimitedMedianStartDistance
-
- setLastDistance(double) - Method in interface de.jstacs.algorithms.optimization.StartDistanceForecaster
-
Sets the last used distance.
- setLength(int) - Method in class de.jstacs.parameters.ArrayParameterSet
-
- setLinear(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
If set to true, the probabilities are mapped to colors by directly, otherwise
a logistic mapping is used to emphasize deviations from the uniform distribution.
- setMax(int) - Method in class de.jstacs.utils.DefaultProgressUpdater
-
- setMax(int) - Method in class de.jstacs.utils.GUIProgressUpdater
-
- setMax(int) - Method in class de.jstacs.utils.NullProgressUpdater
-
- setMax(int) - Method in interface de.jstacs.utils.ProgressUpdater
-
Deprecated.
- setMaxTicks(double) - Method in class de.jstacs.utils.NiceScale
-
Sets maximum number of tick marks we're comfortable with
- setMeasure(T) - Method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasureParameterSet
-
- setMinMaxPoints(double, double) - Method in class de.jstacs.utils.NiceScale
-
Sets the minimum and maximum data points for the axis.
- setModelType(String) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.BayesianNetworkTrainSMParameterSet
-
This method allows a simple change of the model type.
- setMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
-
- setMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
-
Sets the length of the current motif.
- setName(String) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
-
This method set a name for the current instance
- setNumberOfStarts(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
-
Sets the number of starts to i
- setNumberOfThreads(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
-
This method allows to set the number of threads used while optimization.
- setNumberOfThreads(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
-
This method set the number of threads used during optimization.
- setOffset() - Method in class de.jstacs.utils.NullProgressUpdater
-
- setOriginalIndex(int) - Method in class de.jstacs.clustering.hierachical.ClusterTree
-
Sets the original index (e.g., if elements have been removed from the tree) referring to indexes
in the distance matrix that has been used to build a tree.
- setOutputStream(OutputStream) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
-
- setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
-
Sets the OutputStream that is used e.g.
- setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
-
- setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
-
- setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
- setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
-
- setParameter(double[], int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
-
This method sets the internal parameters using the given global parameter array, the global offset of the HMM and the internal offset.
- setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
- setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
-
- setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
-
- setParameterFor(int, int[][], BNDiffSMParameter) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
-
- setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
-
- setParameterOffset(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
-
This method sets the internal parameter offset and returns the new parameter offset for further use.
- setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
- setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
-
- setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
-
- setParameterOffset(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
-
This method sets the internal offset of the parameter index.
- setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
-
- setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
-
- setParameterOffset() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
-
This method allows to set the parameter offset in each internally used
TransitionElement.
- setParameterOptimization(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
-
This method enables the user to choose whether the parameters should be optimized or not.
- setParameterOptimization(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
-
This method allows the user to specify whether the parameters should be
optimized or not.
- setParameters(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
Sets the current parameters for the class weights and in all scoring functions
- setParameters(double[], int) - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.MultiDimensionalSequenceWrapperDiffSS
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
-
- setParameters(double, double, double) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
-
this method can be used to set the parameters even if the parameters are not allowed to be optimized.
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
-
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
-
- setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
-
- setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.MultivariateGaussianEmission
-
- setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
- setParameters(Emission) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
-
Set values of parameters of the instance to the value of the parameters of the given instance.
- setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
-
- setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
-
- setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
-
- setParameters(BasicHigherOrderTransition.AbstractTransitionElement) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
-
Set values of parameters of the instance to the value of the parameters of the given instance.
- setParameters(Transition) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
-
- setParameters(double[], int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
-
This method allows to set the parameters of the transition.
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
-
This method sets the internal parameters to the values of
params beginning at index start.
- setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
-
- setParameters(Transition) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
-
Set values of parameters of the instance to the value of the parameters of the given instance.
- setParametersForFunction(int, double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
-
This method allows to set the parameters for specific functions.
- setParametersToValue(MEMConstraint[], double) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
-
This method is a convenience method that sets the same value for all parameter of the constraints
- setParams(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
-
- setParams(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
-
This method sets the parameters for thread index
- setParams(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
-
- setParams(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
-
Sets the current values as parameters.
- setParams(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
-
This method allows to set the new parameters using a specific offset.
- setParamsStarts() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
-
- setParent(ParameterSet) - Method in class de.jstacs.parameters.Parameter
-
- setParent(Parameter) - Method in class de.jstacs.parameters.ParameterSet
-
- setParser(SequenceAnnotationParser) - Method in class de.jstacs.results.DataSetResult
-
- setPath(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
-
Sets the path of the directory containing the file to path
- setPlugInParameters(int, boolean, DataSet[], double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
-
Computes and sets the plug-in parameters (MAP estimated parameters) from
data using weights.
- setPrior(LogPrior) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
-
This method set a new prior that should be used for optimization.
- setRangeable(boolean) - Method in class de.jstacs.parameters.AbstractSelectionParameter
-
- setRangeable(boolean) - Method in class de.jstacs.parameters.SimpleParameter
-
- setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
-
- setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
-
- setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
-
- setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
-
Sets the value val for the root node child.
- setSeed(long) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
- setSelected(String, boolean) - Method in class de.jstacs.parameters.MultiSelectionParameter
-
Sets the selection of the option with key key to the value
of selected.
- setSelected(int, boolean) - Method in class de.jstacs.parameters.MultiSelectionParameter
-
Sets the selection of option with no.
- setShape(String) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
Sets the graphviz shape of the node that uses this emission to some non-standard value
(standard is "house").
- setShiftCorrection(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
-
Enables or disables the phase shift correction.
- setSkiptInit(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
-
Sets if the model should be initialized (randomly) before optimization
- setStartParamsToConditionalStationaryDistributions() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
-
Sets the start parameters of this homogeneous Markov model to
the corresponding stationary distributions of the transition probabilities.
- setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
-
- setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
-
- setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
-
- setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
-
- setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
-
- setStatisticForHyperparameters(int[], double[]) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
-
This method sets the hyperparameters for the model parameters by
evaluating the given statistic.
- setStoreAll(boolean) - Method in class de.jstacs.classifiers.assessment.ClassifierAssessmentAssessParameterSet
-
This method allows to set the switch for storing all individual performance measure values of each iteration of the
ClassifierAssessment.
- setStringToBeParsed(String) - Method in class de.jstacs.io.SymbolExtractor
-
Sets a new
String to be parsed.
- setTempDir(File) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
-
- setThreadIndependentParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
-
This method allows to set thread independent parameters.
- setThreadIndependentParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
-
- setThresholdClassWeights(boolean, double) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
-
- setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
This method is invoked by the train-method and sets for a
given data set the data set that should be used for train.
- setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
-
- setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
-
- setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
-
- setValidator(ParameterValidator) - Method in class de.jstacs.parameters.SimpleParameter
-
- setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
-
- setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
-
- setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
-
Sets the value if it is bigger than the current value and keeps the
parents information.
- setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
-
Sets the value for the edge
parents[0],...,parents[k-1] -> child.
- setValue(Object) - Method in class de.jstacs.parameters.EnumParameter
-
- setValue(Object) - Method in class de.jstacs.parameters.FileParameter
-
- setValue(Object) - Method in class de.jstacs.parameters.MultiSelectionParameter
-
- setValue(Object) - Method in class de.jstacs.parameters.Parameter
-
- setValue(Object) - Method in class de.jstacs.parameters.ParameterSetContainer
-
- setValue(Object) - Method in class de.jstacs.parameters.RangeParameter
-
- setValue(Object) - Method in class de.jstacs.parameters.SelectionParameter
-
Sets the selected value to the one that is specified by the key
value.
- setValue(Object) - Method in class de.jstacs.parameters.SimpleParameter
-
- setValue(double) - Method in class de.jstacs.sampling.AbstractBurnInTest
-
- setValue(double) - Method in interface de.jstacs.sampling.BurnInTest
-
This method can be used to fill the internal memory with the values that
will be used to determine the length of the burn-in phase.
- setValue(double) - Method in class de.jstacs.sampling.SimpleBurnInTest
-
Deprecated.
- setValue(double) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
-
Sets the current value of this parameter.
- setValue(int) - Method in class de.jstacs.utils.DefaultProgressUpdater
-
- setValue(int) - Method in class de.jstacs.utils.GUIProgressUpdater
-
- setValue(int) - Method in class de.jstacs.utils.NullProgressUpdater
-
- setValue(int) - Method in interface de.jstacs.utils.ProgressUpdater
-
Deprecated.
Sets the current value the supervised process has reached.
- setValue(int) - Method in class de.jstacs.utils.TimeLimitedProgressUpdater
-
- setValueFromTag(String, Object) - Method in class de.jstacs.parameters.ParameterSetTagger
-
This method allows to easily set the value of a parameter defined by the tag.
- setValues(String) - Method in class de.jstacs.parameters.RangeParameter
-
Sets a list of values from a
String containing a space separated
list of values.
- setValues(Object, int, Object, RangeParameter.Scale) - Method in class de.jstacs.parameters.RangeParameter
-
Sets the values of this
RangeParameter as a range of values,
specified by a start value, a last value, a number of steps between these
values (without the last value) and a scale in that the values between
the first and the last value are chosen.
- setValues(double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools.DualFunction
-
This method set the values of the Lagrange multiplicators of the constraints
- setValuesInLogScale(boolean, double, Object, int, Object) - Method in class de.jstacs.parameters.RangeParameter
-
This method enables you to set a list of values in an easy manner.
- setWeight(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
-
This method set the weight (length, rate ...) for the incoming edge
- setWeights(double...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
-
This method set the weights for the summand of the function.
- setWeights(double...) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
Sets the weights of each component.
- SGIS - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
-
This constant can be used to specify that the model should use the iterative scaling for
training.
- SGIS_P - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
-
This constant can be used to specify that the model should use the iterative scaling for
training.
- shallBeRanged() - Method in class de.jstacs.parameters.RangeParameter
-
Returns one of
LIST, RANGE or
NO depending on
the input used to specify this
RangeParameter.
- SharedStructureClassifier - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared
-
This class enables you to learn the structure on all classes of the
classifier together.
- SharedStructureClassifier(int, StructureLearner.ModelType, byte, StructureLearner.LearningType, FSDAGTrainSM...) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
-
- SharedStructureClassifier(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
-
The standard constructor for the interface
Storable.
- SharedStructureMixture - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared
-
This class handles a mixture of models with the same structure that is
learned via EM.
- SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, double, TerminationCondition) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
-
- SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, double[], double, TerminationCondition) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
-
- SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, boolean, double[], double, TerminationCondition) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
-
- SharedStructureMixture(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
-
The standard constructor for the interface
Storable.
- shortcut - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
-
These shortcuts indicate the beginning of a new part in the parameter vector.
- ShortSequence - Class in de.jstacs.data.sequences
-
This class is for sequences with the alphabet symbols encoded as
shortss and can therefore be used for discrete
AlphabetContainers with alphabets that use many different symbols.
- ShortSequence(AlphabetContainer, short[]) - Constructor for class de.jstacs.data.sequences.ShortSequence
-
Creates a new
ShortSequence from an array of
short-
encoded alphabet symbols.
- ShortSequence(AlphabetContainer, String) - Constructor for class de.jstacs.data.sequences.ShortSequence
-
- ShortSequence(AlphabetContainer, SequenceAnnotation[], String, String) - Constructor for class de.jstacs.data.sequences.ShortSequence
-
- ShortSequence(AlphabetContainer, SequenceAnnotation[], SymbolExtractor) - Constructor for class de.jstacs.data.sequences.ShortSequence
-
- shouldBeNormalized() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
-
This method indicates if a normalization shall be used while
optimization.
- showImage(String, BufferedImage) - Static method in class de.jstacs.utils.REnvironment
-
Enables you to show an image.
- showImage(String, BufferedImage, int) - Static method in class de.jstacs.utils.REnvironment
-
Enables you to show an image.
- shuffle(SimpleDiscreteSequence, int) - Static method in class de.jstacs.data.sequences.SimpleDiscreteSequence
-
This method implements the algorithm of D.
- SignificantMotifOccurrencesFinder - Class in de.jstacs.motifDiscovery
-
This class enables the user to predict motif occurrences given a specific significance level.
- SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.RandomSeqType, boolean, int, double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
-
- SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.RandomSeqType, SignificantMotifOccurrencesFinder.JoinMethod, boolean, int, double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
-
- SignificantMotifOccurrencesFinder(MotifDiscoverer, DataSet, double[], double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
-
- SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.JoinMethod, DataSet, double[], double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
-
- SignificantMotifOccurrencesFinder.JoinMethod - Interface in de.jstacs.motifDiscovery
-
Interface for methods that combine several profiles over the same sequence
into one common profile
- SignificantMotifOccurrencesFinder.RandomSeqType - Enum in de.jstacs.motifDiscovery
-
- SignificantMotifOccurrencesFinder.SumOfProbabilities - Class in de.jstacs.motifDiscovery
-
Joins several profiles containing log-probabilities into one profile containing
the logarithm of the sum of the probabilities of the single profiles.
- SilentEmission - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions
-
This class implements a silent emission which is used to create silent states.
- SilentEmission() - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
-
The main constructor.
- SilentEmission(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
-
The standard constructor for the interface
Storable.
- SimpleBurnInTest - Class in de.jstacs.sampling
-
- SimpleBurnInTest(int) - Constructor for class de.jstacs.sampling.SimpleBurnInTest
-
Deprecated.
This is the main constructor that creates an instance of
SimpleBurnInTest with fixed burn-in length.
- SimpleBurnInTest(StringBuffer) - Constructor for class de.jstacs.sampling.SimpleBurnInTest
-
Deprecated.
The standard constructor for the interface
Storable.
- SimpleCosts - Class in de.jstacs.algorithms.alignment.cost
-
Class for simple costs with costs
match for a match,
mismatch for a mismatch, and
gap for a gap (of length 1).
- SimpleCosts(double, double, double) - Constructor for class de.jstacs.algorithms.alignment.cost.SimpleCosts
-
Creates a new instance of simple costs with costs
match for a match,
mismatch for a mismatch, and
gap for a gap (of length 1).
- SimpleCosts(StringBuffer) - Constructor for class de.jstacs.algorithms.alignment.cost.SimpleCosts
-
Restores
SimpleCosts object from its XML representation.
- SimpleDifferentiableState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
-
- SimpleDifferentiableState(DifferentiableEmission, String, boolean) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleDifferentiableState
-
- SimpleDiscreteSequence - Class in de.jstacs.data.sequences
-
This is the main class for any discrete sequence.
- SimpleDiscreteSequence(AlphabetContainer, SequenceAnnotation[]) - Constructor for class de.jstacs.data.sequences.SimpleDiscreteSequence
-
- SimpleGaussianSumLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
-
This class implements a prior that is a product of Gaussian distributions
with mean 0 and equal variance for each parameter.
- SimpleGaussianSumLogPrior(double) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
-
- SimpleGaussianSumLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
-
The standard constructor for the interface
Storable.
- SimpleHistory - Class in de.jstacs.motifDiscovery.history
-
This class implements a simple history that has a limited memory that will be
used cyclicly.
- SimpleHistory(int) - Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
-
This constructor creates a simple history with limited memory.
- SimpleHistory(int, boolean, boolean, boolean) - Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
-
This constructor creates a simple history with limited memory.
- SimpleHistory(StringBuffer) - Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
-
This is the constructor for the interface
Storable.
- SimpleParameter - Class in de.jstacs.parameters
-
Class for a "simple" parameter.
- SimpleParameter(StringBuffer) - Constructor for class de.jstacs.parameters.SimpleParameter
-
The standard constructor for the interface
Storable.
- SimpleParameter(DataType, String, String, boolean) - Constructor for class de.jstacs.parameters.SimpleParameter
-
- SimpleParameter(DataType, String, String, boolean, Object) - Constructor for class de.jstacs.parameters.SimpleParameter
-
- SimpleParameter(DataType, String, String, boolean, ParameterValidator) - Constructor for class de.jstacs.parameters.SimpleParameter
-
- SimpleParameter(DataType, String, String, boolean, ParameterValidator, Object) - Constructor for class de.jstacs.parameters.SimpleParameter
-
- SimpleParameter.DatatypeNotValidException - Exception in de.jstacs.parameters
-
Class for an
Exception that can be thrown if the provided
int-value that represents a data type is not one of the
values defined in
DataType.
- SimpleParameter.IllegalValueException - Exception in de.jstacs.parameters
-
This exception is thrown if a parameter is not valid.
- SimpleParameterSet - Class in de.jstacs.parameters
-
- SimpleParameterSet(Parameter...) - Constructor for class de.jstacs.parameters.SimpleParameterSet
-
Creates a new SimpleParameterSet from an array of Parameters.
- SimpleParameterSet(StringBuffer) - Constructor for class de.jstacs.parameters.SimpleParameterSet
-
The standard constructor for the interface
Storable.
- SimpleResult - Class in de.jstacs.results
-
Abstract class for a
Result with a value of a primitive data type or
String.
- SimpleResult(String, String, DataType) - Constructor for class de.jstacs.results.SimpleResult
-
The main constructor which takes the main information of a result.
- SimpleResult(StringBuffer) - Constructor for class de.jstacs.results.SimpleResult
-
- SimpleSamplingState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
-
This class implements a state that can be used for a HMM that obtains its parameters from sampling.
- SimpleSamplingState(SamplingEmission, String, boolean) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
-
This constructor creates a state that can be used in a HMM that obtains its parameters from sampling.
- SimpleSequenceAnnotationParser - Class in de.jstacs.data.sequences.annotation
-
- SimpleSequenceAnnotationParser() - Constructor for class de.jstacs.data.sequences.annotation.SimpleSequenceAnnotationParser
-
- SimpleSequenceIterator - Class in de.jstacs.data.bioJava
-
- SimpleSequenceIterator(Sequence...) - Constructor for class de.jstacs.data.bioJava.SimpleSequenceIterator
-
- SimpleState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
-
- SimpleState(Emission, String, boolean) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
-
- SimpleStaticConstraint - Class in de.jstacs.parameters.validation
-
Class for a
Constraint that checks values against static values using
the comparison operators defined in the interface
Constraint.
- SimpleStaticConstraint(Number, int) - Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
-
- SimpleStaticConstraint(String, int) - Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
-
- SimpleStaticConstraint(StringBuffer) - Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
-
The standard constructor for the interface
Storable.
- SimpleStringExtractor - Class in de.jstacs.io
-
This is a simple class that extracts
Strings.
- SimpleStringExtractor(String...) - Constructor for class de.jstacs.io.SimpleStringExtractor
-
- simpleWeights(double[]) - Static method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasure
-
Returns true if all weights in weight are 1.
- SinglePositionSequenceAnnotation - Class in de.jstacs.data.sequences.annotation
-
Class for some annotations that consist mainly of one position on a sequence.
- SinglePositionSequenceAnnotation(SinglePositionSequenceAnnotation.Type, String, int) - Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
-
- SinglePositionSequenceAnnotation(SinglePositionSequenceAnnotation.Type, String, int, Result...) - Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
-
- SinglePositionSequenceAnnotation(StringBuffer) - Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
-
The standard constructor for the interface
Storable.
- SinglePositionSequenceAnnotation.Type - Enum in de.jstacs.data.sequences.annotation
-
- SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabet.DNAAlphabetParameterSet
-
The only instance of this class.
- SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabet
-
The only instance of this class.
- SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
-
The only instance of this class.
- SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabetContainer
-
The only instance of this class.
- SINGLETON - Static variable in class de.jstacs.data.alphabets.IUPACDNAAlphabet.IUPACDNAAlphabetParameterSet
-
The only instance of this class.
- SINGLETON - Static variable in class de.jstacs.data.alphabets.IUPACDNAAlphabet
-
The only instance of this class.
- SINGLETON - Static variable in class de.jstacs.data.alphabets.ProteinAlphabet.ProteinAlphabetParameterSet
-
The only instance of this class.
- SINGLETON - Static variable in class de.jstacs.data.alphabets.ProteinAlphabet
-
The only instance of this class.
- Singleton - Interface in de.jstacs
-
This interface states that the implementing class has only one immutable instance.
- Singleton.SingletonHandler - Class in de.jstacs
-
This handler helps to retrieve the single instance of a
Singleton.
- SingletonHandler() - Constructor for class de.jstacs.Singleton.SingletonHandler
-
- size() - Method in class de.jstacs.AnnotatedEntityList
-
- SkewNormalLikeDurationDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif
-
This class implements a skew normal like discrete truncated distribution.
- SkewNormalLikeDurationDiffSM(int, int, double, double, double) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
-
This is the main constructor if the parameters are fixed.
- SkewNormalLikeDurationDiffSM(int, int, boolean, double, double, boolean, double, double, boolean, double, double, int) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
-
This is the constructor that allows the most flexible handling of the parameters.
- SkewNormalLikeDurationDiffSM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
-
- skip(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
-
This method skips some position.
- skipInit - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
-
Indicates if the model should be initialized (randomly) before optimization
- skipLastClassifiersDuringClassifierTraining - Variable in class de.jstacs.classifiers.assessment.ClassifierAssessment
-
Skip last classifier.
- SmallDifferenceOfFunctionEvaluationsCondition - Class in de.jstacs.algorithms.optimization.termination
-
This class implements a
TerminationCondition that stops an optimization
if the difference of the current and the last function evaluations will be small, i.e.,

.
- SmallDifferenceOfFunctionEvaluationsCondition(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
-
This constructor creates an instance that stops the optimization if the difference of the
current and the last function evaluations is smaller than epsilon.
- SmallDifferenceOfFunctionEvaluationsCondition(SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
-
This is the main constructor creating an instance from a given parameter set.
- SmallDifferenceOfFunctionEvaluationsCondition(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
-
The standard constructor for the interface
Storable.
- SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet - Class in de.jstacs.algorithms.optimization.termination
-
- SmallDifferenceOfFunctionEvaluationsConditionParameterSet() - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
-
This constructor creates an empty parameter set.
- SmallDifferenceOfFunctionEvaluationsConditionParameterSet(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
-
The standard constructor for the interface
Storable.
- SmallDifferenceOfFunctionEvaluationsConditionParameterSet(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
-
This constructor creates a filled instance of a parameters set.
- SmallGradientConditon - Class in de.jstacs.algorithms.optimization.termination
-
This class implements a
TerminationCondition that allows no further iteration in an optimization if the
the gradient becomes small, i.e.,

.
- SmallGradientConditon(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
-
This constructor creates an instance that stops the optimization if the sum of the absolute
values of gradient components is smaller than epsilon.
- SmallGradientConditon(SmallGradientConditon.SmallGradientConditonParameterSet) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
-
This is the main constructor creating an instance from a given parameter set.
- SmallGradientConditon(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
-
The standard constructor for the interface
Storable.
- SmallGradientConditon.SmallGradientConditonParameterSet - Class in de.jstacs.algorithms.optimization.termination
-
- SmallGradientConditonParameterSet() - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
-
This constructor creates an empty parameter set.
- SmallGradientConditonParameterSet(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
-
The standard constructor for the interface
Storable.
- SmallGradientConditonParameterSet(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
-
This constructor creates a filled instance of a parameters set.
- SmallStepCondition - Class in de.jstacs.algorithms.optimization.termination
-
This class implements a
TerminationCondition that allows no further iteration in an optimization if the
scalar product of the current and the last values of
x will be small, i.e.,

.
- SmallStepCondition(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
-
This constructor creates an instance that allows no further iteration in an optimization if the
scalar product of the current and the last values of x is smaller than epsilon.
- SmallStepCondition(SmallStepCondition.SmallStepConditionParameterSet) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
-
This is the main constructor creating an instance from a given parameter set.
- SmallStepCondition(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
-
The standard constructor for the interface
Storable.
- SmallStepCondition.SmallStepConditionParameterSet - Class in de.jstacs.algorithms.optimization.termination
-
- SmallStepConditionParameterSet() - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
-
This constructor creates an empty parameter set.
- SmallStepConditionParameterSet(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
-
The standard constructor for the interface
Storable.
- SmallStepConditionParameterSet(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
-
This constructor creates a filled instance of a parameters set.
- smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.MeanSmoothing
-
- smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.MedianSmoothing
-
- smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.NoSmoothing
-
- smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.Smoothing
-
Returns the smoothed version of original.
- Smoothing() - Constructor for class de.jstacs.data.DinucleotideProperty.Smoothing
-
- SoftOneOfN - Class in de.jstacs.utils.random
-
This random generator returns 1-epsilon for one and equal parts
for the rest of a random vector.
- SoftOneOfN(double) - Constructor for class de.jstacs.utils.random.SoftOneOfN
-
This constructor can be used for (soft) sampling one of n.
- SoftOneOfN() - Constructor for class de.jstacs.utils.random.SoftOneOfN
-
This constructor can be used for (hard) sampling one of n.
- sort(String) - Method in class de.jstacs.results.ListResult
-
This method enables you to sort the entries of this container by a
specified column.
- sort() - Method in class de.jstacs.utils.DoubleList
-
- sort() - Method in class de.jstacs.utils.IntList
-
This method sorts the elements of the list.
- sortAlongWith(double[], double[]...) - Static method in class de.jstacs.utils.ToolBox
-
This method implements a sort algorithm on the array arrayToBeSorted.
- sostream - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
-
This stream is used for comments, e.g.
- sostream - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
-
This stream is used for comments, computation steps/results or any other
kind of output during the training, ...
- sostream - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
-
This is the stream for writing information while training.
- sostream - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
This is the stream for writing information while training.
- source - Variable in class de.jstacs.algorithms.graphs.Edge
-
The source node.
- SparseSequence - Class in de.jstacs.data.sequences
-
This class is an implementation for sequences on one alphabet with length 4.
- SparseSequence(AlphabetContainer, String) - Constructor for class de.jstacs.data.sequences.SparseSequence
-
- SparseSequence(AlphabetContainer, SymbolExtractor) - Constructor for class de.jstacs.data.sequences.SparseSequence
-
- SparseStringExtractor - Class in de.jstacs.io
-
- SparseStringExtractor(String) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file.
- SparseStringExtractor(File) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file.
- SparseStringExtractor(String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file.
- SparseStringExtractor(String, char) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore.
- SparseStringExtractor(File, char) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore.
- SparseStringExtractor(String, char, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore.
- SparseStringExtractor(String, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file and sets the
annotation of the source to annotation.
- SparseStringExtractor(String, char, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file, ignores those
starting with the comment character ignore and sets the
annotation of the source to annotation.
- SparseStringExtractor(File, char, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a file, ignores those
starting with the comment character ignore and sets the
annotation of the source to annotation.
- SparseStringExtractor(Reader, char, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
-
A constructor that reads the lines from a
Reader, ignores those
starting with the comment character
ignore and sets the
annotation of the source to
annotation.
- spearmanCorrelation(double[], double[]) - Static method in class de.jstacs.utils.ToolBox
-
The method computes the Spearman correlation of two vectors.
- spearmanCorrelation(double[], double[], double[]) - Static method in class de.jstacs.utils.ToolBox
-
Computes the Spearman correlation of two vectors with weights on the individual entries.
- SplitSequenceAnnotationParser - Class in de.jstacs.data.sequences.annotation
-
- SplitSequenceAnnotationParser() - Constructor for class de.jstacs.data.sequences.annotation.SplitSequenceAnnotationParser
-
- SplitSequenceAnnotationParser(String, String) - Constructor for class de.jstacs.data.sequences.annotation.SplitSequenceAnnotationParser
-
- standardDeviation - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.PluginGaussianEmission
-
Initial standard deviation.
- start - Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
-
This array specifies the start positions of the specific parts.
- START_NODE - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
-
The
String for the start node used in Graphviz annotation.
- STARTDISTANCE - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
-
The start distance for the line search in an optimization using the
Optimizer.
- StartDistanceForecaster - Interface in de.jstacs.algorithms.optimization
-
This interface is used to determine the next start distance that will be used
in a line search.
- startIndexOfParams - Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
-
- starts - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
-
The start indices.
- starts - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
The number of starts.
- startS1 - Variable in class de.jstacs.algorithms.alignment.Alignment
-
The start position in the first sequence
- startS2 - Variable in class de.jstacs.algorithms.alignment.Alignment
-
The start position in the second sequence
- State - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
-
This interface declares the methods of any state used in a hidden Markov model.
- stateList - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
-
Helper variable = only for internal use.
- states - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
-
The (hidden) states of the HMM.
- states - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
-
The states that can be visited
- StationaryDistribution - Class in de.jstacs.utils
-
This class can be used to determine the stationary distribution.
- StationaryDistribution() - Constructor for class de.jstacs.utils.StationaryDistribution
-
- stationaryIteration - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
The number of (stationary) iterations of the Gibbs Sampler.
- statistic - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
-
The array for storing the statistics for
each parameter
- statistic - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
-
The sufficient statistic for determining the parameters during sampling, viterbi or Baum-Welch training.
- StatisticalModel - Interface in de.jstacs.sequenceScores.statisticalModels
-
This interface declares methods of a statistical model, i.e., a
SequenceScore that defines a proper likelihood
over the input
Sequences.
- StatisticalModelTester - Class in de.jstacs.utils
-
This class is useful for some test for any (discrete) models.
- StatisticalModelTester() - Constructor for class de.jstacs.utils.StatisticalModelTester
-
- StatisticalTest - Class in de.jstacs.utils
-
This class enables the user to compute some divergences.
- StatisticalTest() - Constructor for class de.jstacs.utils.StatisticalTest
-
- statisticsTransitionProb - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
-
Represents the summarized epsilons required for estimating the transition probabilities from the context.
- statisticsTransitionProb - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
-
Represents the gammas required for estimating the transition probabilities not including pseudocounts.
- STEEPEST_DESCENT - Static variable in class de.jstacs.algorithms.optimization.Optimizer
-
This constant can be used to specify that the steepest descent should be
used in the optimize-method.
- steepestDescent(DifferentiableFunction, double[], TerminationCondition, double, StartDistanceForecaster, OutputStream, Time) - Static method in class de.jstacs.algorithms.optimization.Optimizer
-
The steepest descent.
- stopThreads() - Method in interface de.jstacs.algorithms.optimization.MultiThreadedFunction
-
This method can and should be used to stop all threads if they are not needed any longer.
- stopThreads() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
-
This method can and should be used to stop all threads if they are not needed any longer.
- Storable - Interface in de.jstacs
-
This is the root interface for all immutable objects that must be stored in
e.g.
- StorableResult - Class in de.jstacs.results
-
- StorableResult(String, String, Storable) - Constructor for class de.jstacs.results.StorableResult
-
Creates a result for an XML representation of an object.
- StorableResult(StringBuffer) - Constructor for class de.jstacs.results.StorableResult
-
The standard constructor for the interface
Storable.
- StorableResultSaver - Class in de.jstacs.results.savers
-
- StorableValidator - Class in de.jstacs.parameters.validation
-
Class for a validator that validates instances and XML representations for
the correct class types (e.g.
- StorableValidator(Class<? extends Storable>, boolean) - Constructor for class de.jstacs.parameters.validation.StorableValidator
-
- StorableValidator(Class<? extends Storable>) - Constructor for class de.jstacs.parameters.validation.StorableValidator
-
- StorableValidator(StringBuffer) - Constructor for class de.jstacs.parameters.validation.StorableValidator
-
The standard constructor for the interface
Storable.
- StrandDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture
-
This class enables the user to search on both strand.
- StrandDiffSM(DifferentiableStatisticalModel, double, int, boolean, StrandDiffSM.InitMethod) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
-
This constructor creates a StrandDiffSM that optimizes the usage of each strand.
- StrandDiffSM(DifferentiableStatisticalModel, int, boolean, StrandDiffSM.InitMethod, double) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
-
This constructor creates a StrandDiffSM that has a fixed frequency for the strand usage.
- StrandDiffSM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
-
- StrandDiffSM.InitMethod - Enum in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture
-
This enum defines the different types of plug-in initialization of a
StrandDiffSM.
- StrandedLocatedSequenceAnnotationWithLength - Class in de.jstacs.data.sequences.annotation
-
- StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, Result...) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
-
- StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, Collection<Result>) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
-
- StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, SequenceAnnotation[], Result...) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
-
- StrandedLocatedSequenceAnnotationWithLength(String, String, StrandedLocatedSequenceAnnotationWithLength.Strand, LocatedSequenceAnnotation[], Result...) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
-
- StrandedLocatedSequenceAnnotationWithLength(StringBuffer) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
-
The standard constructor for the interface
Storable.
- StrandedLocatedSequenceAnnotationWithLength.Strand - Enum in de.jstacs.data.sequences.annotation
-
This enum defines possible orientations on the strands.
- strandedness() - Method in enum de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength.Strand
-
Returns the strandedness, i.e.
- StrandTrainSM - Class in de.jstacs.sequenceScores.statisticalModels.trainable.mixture
-
This model handles sequences that can either lie on the forward strand or on
the reverse complementary strand.
- StrandTrainSM(TrainableStatisticalModel, int, boolean, double[], double, AbstractMixtureTrainSM.Algorithm, double, TerminationCondition, AbstractMixtureTrainSM.Parameterization, int, int, BurnInTest) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
-
- StrandTrainSM(TrainableStatisticalModel, int, double[], double, TerminationCondition, AbstractMixtureTrainSM.Parameterization) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
-
Creates an instance using EM and estimating the component probabilities.
- StrandTrainSM(TrainableStatisticalModel, int, double, double, TerminationCondition, AbstractMixtureTrainSM.Parameterization) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
-
Creates an instance using EM and fixed component probabilities.
- StrandTrainSM(TrainableStatisticalModel, int, double[], int, int, BurnInTest) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
-
Creates an instance using Gibbs Sampling and sampling the component
probabilities.
- StrandTrainSM(TrainableStatisticalModel, int, double, int, int, BurnInTest) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
-
Creates an instance using Gibbs Sampling and fixed component
probabilities.
- StrandTrainSM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
-
The constructor for the interface
Storable.
- stream - Variable in class de.jstacs.utils.graphics.EPSAdaptor
-
The stream for saving the results
- StringAlignment - Class in de.jstacs.algorithms.alignment
-
Class for the representation of an alignment of
Strings.
- StringAlignment(StringBuffer) - Constructor for class de.jstacs.algorithms.alignment.StringAlignment
-
- StringAlignment(double, String...) - Constructor for class de.jstacs.algorithms.alignment.StringAlignment
-
This constructor creates an instance storing the aligned Strings and the costs of the alignment.
- StringAlignment(double, String[], Result) - Constructor for class de.jstacs.algorithms.alignment.StringAlignment
-
This constructor creates an instance storing the aligned Strings and the costs of the alignment.
- StringExtractor - Class in de.jstacs.io
-
This class implements the reader that extracts
Strings from either a
File or a
String.
- StringExtractor(File, int) - Constructor for class de.jstacs.io.StringExtractor
-
A constructor that reads the lines from file.
- StringExtractor(File, int, char) - Constructor for class de.jstacs.io.StringExtractor
-
A constructor that reads the lines from file and ignores
those starting with the comment character ignore.
- StringExtractor(File, int, String) - Constructor for class de.jstacs.io.StringExtractor
-
A constructor that reads the lines from file and sets the
annotation of the source to annotation.
- StringExtractor(File, int, char, String) - Constructor for class de.jstacs.io.StringExtractor
-
A constructor that reads the lines from file, ignores those
starting with the comment character ignore and sets the
annotation of the source to annotation.
- StringExtractor(String, int, String) - Constructor for class de.jstacs.io.StringExtractor
-
A constructor that reads the lines from a
String
content and sets the annotation of the source to
annotation.
- StringExtractor(String, int, char, String) - Constructor for class de.jstacs.io.StringExtractor
-
A constructor that reads the lines from a
String
content, ignores those starting with the comment character
ignore and sets the annotation of the source to
annotation.
- StructureLearner - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
-
This class can be used to learn the structure of any discrete model.
- StructureLearner(AlphabetContainer, int, double) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
-
- StructureLearner(AlphabetContainer, int) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
-
- StructureLearner.LearningType - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
-
This
enum defines the different types of learning that are
possible with the
StructureLearner.
- StructureLearner.ModelType - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
-
This
enum defines the different types of models that can be
learned with the
StructureLearner.
- structureMeasure - Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
-
Measure that defines the network structure.
- stylesheet - Static variable in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
-
The stylesheet used for the Galaxy HTML output.
- SubclassFinder - Class in de.jstacs.utils
-
Utility-class with static methods to
find all sub-classes of a certain class (or interface) within the scope
of the current class-loader
find all sub-classes of a certain class (or interface) within the scope
of the current class-loader that can be instantiated, i.e.
- SubclassFinder() - Constructor for class de.jstacs.utils.SubclassFinder
-
- subSampling(int) - Method in class de.jstacs.data.DataSet
-
Randomly samples elements, i.e.
- subSampling(double, double[]) - Method in class de.jstacs.data.DataSet
-
Sub-samples sequences and corresponding weights from this
DataSet.
- SubSequence(AlphabetContainer, Sequence, int, int) - Constructor for class de.jstacs.data.sequences.Sequence.SubSequence
-
- SubSequence(Sequence, int, int) - Constructor for class de.jstacs.data.sequences.Sequence.SubSequence
-
- SubTensor - Class in de.jstacs.algorithms.graphs.tensor
-
This Tensor can be used to extract or use only a part of a complete
Tensor.
- SubTensor(Tensor, int, int) - Constructor for class de.jstacs.algorithms.graphs.tensor.SubTensor
-
This constructor creates a
SubTensor using the
Tensor t for the nodes
offset, offset+1, ..., offset+length-1.
- sum - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
-
The sums of the weighted data per class and additional the total weight
sum.
- sum(double[]) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
-
Computes the sum of all elements in the array ar.
- sum(double...) - Static method in class de.jstacs.utils.ToolBox
-
Computes the sum of the values in array
- sum(int, int, double[]) - Static method in class de.jstacs.utils.ToolBox
-
Computes the sum of the values in array starting at
start until end.
- sum(boolean[]) - Static method in class de.jstacs.utils.ToolBox
-
Counts the number of true values in bools (similar to sum on booleans in R).
- sumNormalisation(double[]) - Static method in class de.jstacs.utils.Normalisation
-
The method does a sum-normalisation on d, i.e.
- sumNormalisation(double[], double[], int) - Static method in class de.jstacs.utils.Normalisation
-
The method does a sum-normalisation on d, i.e.
- SumOfProbabilities() - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder.SumOfProbabilities
-
- SVGAdaptor - Class in de.jstacs.utils.graphics
-
- SVGAdaptor() - Constructor for class de.jstacs.utils.graphics.SVGAdaptor
-
Creates a new adaptor for plotting to an SVG device.
- swap() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
-
This method swaps the current component models with the alternative
model.
- symbol - Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
-
The symbol (out of some
Alphabet) this parameter
is responsible for.
- SymbolExtractor - Class in de.jstacs.io
-
- SymbolExtractor(String) - Constructor for class de.jstacs.io.SymbolExtractor
-
- SymbolExtractor(String, String) - Constructor for class de.jstacs.io.SymbolExtractor
-
- SymmetricKullbackLeiblerDivergence(double) - Constructor for class de.jstacs.utils.PFMComparator.SymmetricKullbackLeiblerDivergence
-
This constructor creates a new instance with a given value for the equivalent sample size.
- SymmetricTensor - Class in de.jstacs.algorithms.graphs.tensor
-
This class can be used for
Tensors with a special symmetry property.
- SymmetricTensor(int, byte) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
-
This constructor creates an empty symmetric tensor with given dimension.
- SymmetricTensor(SymmetricTensor[], double[]) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
-
- SymmetricTensor(AsymmetricTensor) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
-
This constructor creates and checks a filled asymmetric tensor from an
AsymmetricTensor instance.
- SymmetricTensor(double[][][], int, byte) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
-
This constructor creates and checks a filled asymmetric tensor with given
dimension.
- SysProtocol() - Constructor for class de.jstacs.tools.ui.cli.CLI.SysProtocol
-
Creates a new, empty protocol.