|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use WrongAlphabetException | |
|---|---|
| de.jstacs.classifier.assessment | This package allows to assess classifiers. |
| de.jstacs.data | Provides classes for the representation of data. |
| de.jstacs.data.alphabets | Provides classes for the representation of discrete and continuous alphabets, including a DNAAlphabet for the most common case of DNA-sequences |
| de.jstacs.data.bioJava | Provides an adapter between the representation of data in BioJava and the representation used in Jstacs. |
| de.jstacs.data.sequences | Provides classes for representing sequences. |
| de.jstacs.models | Provides the interface Model and its abstract implementation AbstractModel, which is the super class of all other models. |
| de.jstacs.models.discrete | |
| de.jstacs.models.discrete.homogeneous | |
| de.jstacs.models.discrete.inhomogeneous | This package contains various inhomogeneous models. |
| de.jstacs.models.discrete.inhomogeneous.shared | |
| de.jstacs.models.hmm | The package provides all interfaces and classes for a hidden Markov model (HMM). |
| de.jstacs.models.hmm.models | The package provides different implementations of hidden Markov models based on AbstractHMM |
| de.jstacs.models.mixture | This package is the super package for any mixture model. |
| de.jstacs.models.mixture.motif | |
| de.jstacs.motifDiscovery | This package provides the framework including the interface for any de novo motif discoverer |
| de.jstacs.scoringFunctions | Provides ScoringFunctions that can be used in a ScoreClassifier. |
| de.jstacs.scoringFunctions.mix | Provides ScoringFunctions that are mixtures of other ScoringFunctions. |
| de.jstacs.scoringFunctions.mix.motifSearch | |
| Uses of WrongAlphabetException in de.jstacs.classifier.assessment |
|---|
| Methods in de.jstacs.classifier.assessment that throw WrongAlphabetException | |
|---|---|
ListResult |
ClassifierAssessment.assess(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
ProgressUpdater pU,
Sample... s)
Assesses the contained classifiers. |
ListResult |
ClassifierAssessment.assess(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
ProgressUpdater pU,
Sample[][]... s)
Assesses the contained classifiers. |
ListResult |
ClassifierAssessment.assess(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample... s)
Assesses the contained classifiers. |
protected void |
ClassifierAssessment.prepareAssessment(Sample... s)
Prepares an assessment. |
| Constructors in de.jstacs.classifier.assessment that throw WrongAlphabetException | |
|---|---|
ClassifierAssessment(AbstractClassifier... aCs)
Creates a new ClassifierAssessment from a set of
AbstractClassifiers. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and, in addition, classifiers that will be
constructed using the given AbstractModels. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new ClassifierAssessment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
ClassifierAssessment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new ClassifierAssessment from a set of Models. |
|
KFoldCrossValidation(AbstractClassifier... aCs)
Creates a new KFoldCrossValidation from a set of
AbstractClassifiers. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a KFoldCrossValidation
. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new KFoldCrossValidation from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
KFoldCrossValidation(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new KFoldCrossValidation from a set of Models. |
|
RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a
RepeatedHoldOutExperiment. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new RepeatedHoldOutExperiment from a set of
Models. |
|
RepeatedSubSamplingExperiment(AbstractClassifier... aCs)
Creates a new RepeatedSubSamplingExperiment from a set of
AbstractClassifiers. |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a
RepeatedSubSamplingExperiment. |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedSubSamplingExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
RepeatedSubSamplingExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new RepeatedSubSamplingExperiment from a set of
Models. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifiers. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
Model[]... aMs)
This constructor allows to assess a collection of given AbstractClassifiers and those constructed using the given
AbstractModels by a
Sampled_RepeatedHoldOutExperiment. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
Model[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifiers and a two-dimensional array of Model
s, which are combined to additional classifiers. |
|
Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
Model[]... aMs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of
Models. |
|
| Uses of WrongAlphabetException in de.jstacs.data |
|---|
| Methods in de.jstacs.data that throw WrongAlphabetException | |
|---|---|
static Sequence |
Sequence.create(AlphabetContainer con,
SequenceAnnotation[] annotation,
String sequence,
String delim)
Creates a Sequence from a String based on the given
AlphabetContainer using the given delimiter delim
and some annotation for the Sequence. |
static Sequence |
Sequence.create(AlphabetContainer con,
String sequence)
Creates a Sequence from a String based on the given
AlphabetContainer using the standard delimiter for this
AlphabetContainer. |
static Sequence |
Sequence.create(AlphabetContainer con,
String sequence,
String delim)
Creates a Sequence from a String based on the given
AlphabetContainer using the given delimiter delim. |
static Sample |
Sample.diff(Sample data,
Sample... samples)
This method computes the difference between the Sample data and
the Samples samples. |
double |
AlphabetContainer.getCode(int pos,
String sym)
Returns the encoded symbol for sym of the Alphabet
of position pos of this AlphabetContainer. |
int |
Sequence.getHammingDistance(Sequence seq)
This method returns the Hamming distance between the current Sequence and seq. |
Sequence |
DinucleotideProperty.getPropertyAsSequence(Sequence original)
Computes this dinucleotide property for all overlapping twomers in original
and returns the result as a Sequence of length original.getLength()-1 |
boolean |
Sequence.matches(int maxHammingDistance,
Sequence shortSequence)
This method allows to answer the question whether there is a similar pattern find a match with a given maximal number of mismatches. |
| Constructors in de.jstacs.data that throw WrongAlphabetException | |
|---|---|
DNASample(String fName)
Creates a new sample of DNA sequence from a FASTA file with file name fName. |
|
DNASample(String fName,
char ignore)
Creates a new sample of DNA sequence from a file with file name fName. |
|
DNASample(String fName,
char ignore,
SequenceAnnotationParser parser)
Creates a new sample of DNA sequence from a file with file name fName using the given parser. |
|
Sample.WeightedSampleFactory(Sample.WeightedSampleFactory.SortOperation sort,
Sample... data)
Creates a new Sample.WeightedSampleFactory on the given
Sample(s) with Sample.WeightedSampleFactory.SortOperation sort. |
|
Sample.WeightedSampleFactory(Sample.WeightedSampleFactory.SortOperation sort,
Sample[] data,
double[][] weights,
int length)
Creates a new Sample.WeightedSampleFactory on the given array of
Samples and an array of weights with a given
length and Sample.WeightedSampleFactory.SortOperation sort. |
|
Sample.WeightedSampleFactory(Sample.WeightedSampleFactory.SortOperation sort,
Sample data,
double[] weights)
Creates a new Sample.WeightedSampleFactory on the given
Sample and an array of weights with
Sample.WeightedSampleFactory.SortOperation sort. |
|
Sample.WeightedSampleFactory(Sample.WeightedSampleFactory.SortOperation sort,
Sample data,
double[] weights,
int length)
Creates a new Sample.WeightedSampleFactory on the given
Sample and an array of weights with a given
length and Sample.WeightedSampleFactory.SortOperation sort. |
|
Sample(AlphabetContainer abc,
AbstractStringExtractor se)
Creates a new Sample from a StringExtractor
using the given AlphabetContainer. |
|
Sample(AlphabetContainer abc,
AbstractStringExtractor se,
int subsequenceLength)
Creates a new Sample from a StringExtractor
using the given AlphabetContainer and all overlapping windows of
length subsequenceLength. |
|
Sample(AlphabetContainer abc,
AbstractStringExtractor se,
String delim)
Creates a new Sample from a StringExtractor
using the given AlphabetContainer and a delimiter
delim. |
|
Sample(AlphabetContainer abc,
AbstractStringExtractor se,
String delim,
int subsequenceLength)
Creates a new Sample from a StringExtractor
using the given AlphabetContainer, the given delimiter
delim and all overlapping windows of length
subsequenceLength. |
|
Sample(String annotation,
Sequence... seqs)
Creates a new Sample from an array of Sequences and a
given annotation. |
|
| Uses of WrongAlphabetException in de.jstacs.data.alphabets |
|---|
| Methods in de.jstacs.data.alphabets that throw WrongAlphabetException | |
|---|---|
int |
DiscreteAlphabet.getCode(String symbol)
Returns the code of a given symbol. |
| Uses of WrongAlphabetException in de.jstacs.data.bioJava |
|---|
| Methods in de.jstacs.data.bioJava that throw WrongAlphabetException | |
|---|---|
static SequenceIterator |
BioJavaAdapter.sampleToSequenceIterator(Sample sample,
boolean flat)
Creates a SequenceIterator from the Sample
sample preserving as much annotation as possible. |
| Uses of WrongAlphabetException in de.jstacs.data.sequences |
|---|
| Methods in de.jstacs.data.sequences that throw WrongAlphabetException | |
|---|---|
static Sample |
SparseSequence.getSample(AlphabetContainer con,
AbstractStringExtractor... se)
This method allows to create a Sample containing SparseSequences. |
| Constructors in de.jstacs.data.sequences that throw WrongAlphabetException | |
|---|---|
ArbitrarySequence(AlphabetContainer alphabetContainer,
double[] content)
Creates a new ArbitrarySequence from an array of
double-encoded alphabet symbols. |
|
ArbitrarySequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
Creates a new ArbitrarySequence from a String
representation using the delimiter delim. |
|
ArbitrarySequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new ArbitrarySequence from a SymbolExtractor. |
|
ArbitrarySequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new ArbitrarySequence from a String
representation using the default delimiter. |
|
ByteSequence(AlphabetContainer alphabetContainer,
byte[] content)
Creates a new ByteSequence from an array of byte-
encoded alphabet symbols. |
|
ByteSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
Creates a new ByteSequence from a String representation
using the delimiter delim. |
|
ByteSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new ByteSequence from a SymbolExtractor. |
|
ByteSequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new ByteSequence from a String representation
using the default delimiter. |
|
IntSequence(AlphabetContainer alphabetContainer,
int... content)
Creates a new IntSequence from an array of int-
encoded alphabet symbols. |
|
IntSequence(AlphabetContainer alphabetContainer,
int[] content,
int start,
int length)
Creates a new IntSequence from a part of the array of
int- encoded alphabet symbols. |
|
IntSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
Creates a new IntSequence from a String representation
using the delimiter delim. |
|
IntSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new IntSequence from a SymbolExtractor. |
|
IntSequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new IntSequence from a String representation
using the default delimiter. |
|
MappedDiscreteSequence(AlphabetContainer originalAlphabetContainer,
SequenceAnnotation[] seqAn,
DiscreteAlphabetMapping... transformation)
This method allows to create an empty MappedDiscreteSequence. |
|
MappedDiscreteSequence(SimpleDiscreteSequence original,
DiscreteAlphabetMapping... transformation)
This method allows to create a MappedDiscreteSequence from a given Sequence and some given DiscreteAlphabetMappings. |
|
PermutedSequence(Sequence<T> seq)
Creates a new PermutedSequence by shuffling the symbols of a
given Sequence. |
|
PermutedSequence(Sequence<T> seq,
int[] permutation)
Creates a new PermutedSequence for a given permutation |
|
ShortSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
Creates a new ShortSequence from a String representation
using the delimiter delim. |
|
ShortSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new ShortSequence from a SymbolExtractor. |
|
ShortSequence(AlphabetContainer alphabetContainer,
short[] content)
Creates a new ShortSequence from an array of short-
encoded alphabet symbols. |
|
ShortSequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new ShortSequence from a String representation
using the default delimiter. |
|
SimpleDiscreteSequence(AlphabetContainer container,
SequenceAnnotation[] annotation)
This constructor creates a new SimpleDiscreteSequence with the
AlphabetContainer container and the annotation
annotation but without the content. |
|
SparseSequence(AlphabetContainer alphCon,
String seq)
Creates a new SparseSequence from a String
representation. |
|
SparseSequence(AlphabetContainer alphCon,
SymbolExtractor se)
Creates a new SparseSequence from a SymbolExtractor. |
|
| Uses of WrongAlphabetException in de.jstacs.models |
|---|
| Methods in de.jstacs.models that throw WrongAlphabetException | |
|---|---|
double |
UniformModel.getProbFor(Sequence sequence,
int startpos,
int endpos)
|
| Constructors in de.jstacs.models that throw WrongAlphabetException | |
|---|---|
CompositeModel(AlphabetContainer alphabets,
int[] assignment,
Model... models)
Creates a new CompositeModel. |
|
| Uses of WrongAlphabetException in de.jstacs.models.discrete |
|---|
| Methods in de.jstacs.models.discrete that throw WrongAlphabetException | |
|---|---|
static double |
ConstraintManager.countInhomogeneous(AlphabetContainer alphabets,
int length,
Sample data,
double[] weights,
boolean reset,
Constraint... constr)
Fills the (inhomogeneous) Constraint constr with the
weighted absolute frequencies of the Sample data. |
| Uses of WrongAlphabetException in de.jstacs.models.discrete.homogeneous |
|---|
| Methods in de.jstacs.models.discrete.homogeneous that throw WrongAlphabetException | |
|---|---|
Sample |
HomogeneousModel.emitSample(int no,
int... length)
Creates a Sample of a given number of Sequences from a
trained homogeneous model. |
protected abstract Sequence |
HomogeneousModel.getRandomSequence(Random r,
int length)
This method creates a random Sequence from a trained homogeneous
model. |
protected Sequence |
HomogeneousMM.getRandomSequence(Random r,
int length)
|
| Uses of WrongAlphabetException in de.jstacs.models.discrete.inhomogeneous |
|---|
| Methods in de.jstacs.models.discrete.inhomogeneous that throw WrongAlphabetException | |
|---|---|
SymmetricTensor |
StructureLearner.getTensor(Sample data,
double[] weights,
byte order,
StructureLearner.LearningType method)
This method can be used to compute a Tensor that can be used to
determine the optimal structure. |
| Uses of WrongAlphabetException in de.jstacs.models.discrete.inhomogeneous.shared |
|---|
| Constructors in de.jstacs.models.discrete.inhomogeneous.shared that throw WrongAlphabetException | |
|---|---|
SharedStructureMixture(FSDAGModel[] m,
StructureLearner.ModelType model,
byte order,
int starts,
boolean estimateComponentProbs,
double[] weights,
double alpha,
TerminationCondition tc)
Creates a new SharedStructureMixture instance with all relevant
values. |
|
SharedStructureMixture(FSDAGModel[] m,
StructureLearner.ModelType model,
byte order,
int starts,
double[] weights,
double alpha,
TerminationCondition tc)
Creates a new SharedStructureMixture instance with fixed
component weights. |
|
SharedStructureMixture(FSDAGModel[] m,
StructureLearner.ModelType model,
byte order,
int starts,
double alpha,
TerminationCondition tc)
Creates a new SharedStructureMixture instance which estimates the
component probabilities/weights. |
|
| Uses of WrongAlphabetException in de.jstacs.models.hmm |
|---|
| Constructors in de.jstacs.models.hmm that throw WrongAlphabetException | |
|---|---|
AbstractHMM(HMMTrainingParameterSet trainingParameterSet,
String[] name,
int[] emissionIdx,
boolean[] forward,
Emission[] emission)
This is the main constructor for an HMM. |
|
| Uses of WrongAlphabetException in de.jstacs.models.hmm.models |
|---|
| Constructors in de.jstacs.models.hmm.models that throw WrongAlphabetException | |
|---|---|
SamplingPhyloHMM(SamplingHMMTrainingParameterSet trainingParameterSet,
String[] name,
int[] emissionIdx,
boolean[] forward,
PhyloDiscreteEmission[] emission,
TransitionElement... te)
This is the main constructor for a hidden markov model with phylogenetic emission(s) This model can be trained using a metropolis hastings algorithm |
|
| Uses of WrongAlphabetException in de.jstacs.models.mixture |
|---|
| Constructors in de.jstacs.models.mixture that throw WrongAlphabetException | |
|---|---|
AbstractMixtureModel(int length,
Model[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new AbstractMixtureModel. |
|
MixtureModel(int length,
Model[] models,
double[] weights,
int starts,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
MixtureModel(int length,
Model[] models,
double[] weights,
int starts,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
|
MixtureModel(int length,
Model[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new MixtureModel. |
|
MixtureModel(int length,
Model[] models,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
MixtureModel(int length,
Model[] models,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandModel(Model model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new StrandModel. |
|
StrandModel(Model model,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
StrandModel(Model model,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandModel(Model model,
int starts,
double forwardStrandProb,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
StrandModel(Model model,
int starts,
double forwardStrandProb,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
|
| Uses of WrongAlphabetException in de.jstacs.models.mixture.motif |
|---|
| Constructors in de.jstacs.models.mixture.motif that throw WrongAlphabetException | |
|---|---|
HiddenMotifMixture(Model[] models,
boolean[] optimzeArray,
int components,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new HiddenMotifMixture. |
|
SingleHiddenMotifMixture(Model motif,
Model bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureModel.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new SingleHiddenMotifMixture. |
|
SingleHiddenMotifMixture(Model motif,
Model bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization)
Creates a new SingleHiddenMotifMixture using EM and estimating
the probability for finding a motif. |
|
SingleHiddenMotifMixture(Model motif,
Model bg,
boolean trainOnlyMotifModel,
int starts,
double motifProb,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureModel.Parameterization parametrization)
Creates a new SingleHiddenMotifMixture using EM and fixed
probability for finding a motif. |
|
| Uses of WrongAlphabetException in de.jstacs.motifDiscovery |
|---|
| Methods in de.jstacs.motifDiscovery that throw WrongAlphabetException | |
|---|---|
static Pair<Sequence,BitSet[]>[] |
KMereStatistic.getKmereSequenceStatistic(boolean bothStrands,
int maxMismatch,
HashSet<Sequence> filter,
Sample... data)
This method enables the user to get a statistic for a set of k-mers. |
static Hashtable<Sequence,BitSet[]> |
KMereStatistic.getKmereSequenceStatistic(int k,
boolean bothStrands,
int addIndex,
Sample... data)
This method enables the user to get a statistic over all k-mers
in the sequences. |
static Hashtable<Sequence,BitSet[]> |
KMereStatistic.merge(Hashtable<Sequence,BitSet[]> statistic,
int maximalMissmatch,
boolean bothStrands)
This method allows to merge the statistics of k-mers by allowing mismatches. |
| Uses of WrongAlphabetException in de.jstacs.scoringFunctions |
|---|
| Constructors in de.jstacs.scoringFunctions that throw WrongAlphabetException | |
|---|---|
IndependentProductScoringFunction(double ess,
boolean plugIn,
NormalizableScoringFunction... functions)
This constructor creates an instance of an IndependentProductScoringFunction from a given series of
independent NormalizableScoringFunctions. |
|
IndependentProductScoringFunction(double ess,
boolean plugIn,
NormalizableScoringFunction[] functions,
int[] length)
This constructor creates an instance of an IndependentProductScoringFunction from given series of
independent NormalizableScoringFunctions and lengths. |
|
IndependentProductScoringFunction(double ess,
boolean plugIn,
NormalizableScoringFunction[] functions,
int[] index,
int[] length,
boolean[] reverse)
This is the main constructor. |
|
MappingScoringFunction(AlphabetContainer originalAlphabetContainer,
NormalizableScoringFunction nsf,
DiscreteAlphabetMapping... mapping)
The main constructor creating a MappingScoringFunction. |
|
| Uses of WrongAlphabetException in de.jstacs.scoringFunctions.mix |
|---|
| Constructors in de.jstacs.scoringFunctions.mix that throw WrongAlphabetException | |
|---|---|
StrandScoringFunction(NormalizableScoringFunction function,
double forwardPartOfESS,
int starts,
boolean plugIn,
StrandScoringFunction.InitMethod initMethod)
This constructor creates a StrandScoringFunction that optimizes the usage of each strand. |
|
StrandScoringFunction(NormalizableScoringFunction function,
int starts,
boolean plugIn,
StrandScoringFunction.InitMethod initMethod,
double forward)
This constructor creates a StrandScoringFunction that has a fixed frequency for the strand usage. |
|
| Uses of WrongAlphabetException in de.jstacs.scoringFunctions.mix.motifSearch |
|---|
| Constructors in de.jstacs.scoringFunctions.mix.motifSearch that throw WrongAlphabetException | |
|---|---|
MixtureDuration(int starts,
DurationScoringFunction... function)
The main constructor of a MixtureDuration. |
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||